一、Kylin前置概念
1、Kylin术语
1)Data Warehouse(数据仓库)
数据仓库是一个各种数据(包括历史数据和当前数据)的中心存储系统,是BI( business intelligence ,商业智能)的核心部件。
这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商等来自企业所处行业和竞争对手的数据以及来自企业所处的其他外部环境中的各种数据。
2)Business Intelligence(商业智能)
商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。
为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。
3)OLAP(online analytical processing)
OLAP(online analytical processing)是一种软件技术,它使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。从各方面观察信息,也就是从不同的维度分析数据,因此OLAP也成为多维分析。
本文详细介绍了大数据环境下数据仓库与信息采集平台的构建过程,涵盖了Kylin前置概念,用户行为采集平台的系统设计,包括数据仓库、数据采集模块、服务器与JDK的准备,模拟数据的生成,以及使用Kylin进行数据仓库建模和Cube构建。文中还讨论了数据仓库的分层、OLAP和可视化报表工具Superset的使用,以及Presto和Kylin在即席查询中的作用。文章最后探讨了数据仓库的优化策略,包括Cube构建算法、衍生维度、聚合组和Row Key优化,以及Kylin与其他BI工具的集成。
订阅专栏 解锁全文

748

被折叠的 条评论
为什么被折叠?



