1、Python数据探索
Python已成为数据科学的主要语言之一,并继续在数据科学领域不断壮大。如前所述,就原始性能而言,Python并不总是速度最快的语言。但是有些数据处理库(如NumPy)主要用C语言编写,并且经过大量优化,以至于速度不再是问题。
此外,对可读性和可访问性的考虑往往超过了纯粹的速度需求,最大程度地节省开发人员的时间往往更为重要。Python具有较好的可读性和可访问性,并且无论是单独使用还是与Python社区开发的工具相结合,都是极其强大的数据操作和探索工具。
数十年来,电子表格一直是即兴(ad-hoc)数据处理的首选工具。熟悉电子表格的人能够发挥出着实惊人的技巧,可以组合有关联的不同数据集、数据透视表,可以用查找表链接数据集等。尽管每天到处都有人用电子表格完成了大量工作,但它确实存在局限性,Python就能有助于超越这些限制。
之前已经提到过的一个限制是,大多数电子表格软件都有行数限制,目前大约是100万行,这对于许多数据集来说是不够用的。另一个限制就是电子表格本身的寓意。电子表格是二维网格,就是行和列,顶多也就是一堆的网格,这限制了复杂数据的操作与思维方式。
有了Python,就可以绕开电子表格的限制编写代码,按照希望的方式操作数据。可以用无限灵活的方式组合Python数据结构,如列表、元组
本文深入探讨了Python数据科学中常用的pandas库在数据清洗和绘图方面的应用。首先介绍了Python和Jupyter记事本在数据探索中的重要性,然后详细讲解了pandas的数据结构和功能,包括数据加载、数据清洗、数据聚合,以及如何用matplotlib进行数据可视化。通过实例展示了如何使用pandas处理和分析数据,以及如何通过matplotlib创建图表。文章最后还提供了一个全球气温变化的数据清洗和绘图实战案例,演示了如何从数据获取到数据绘图的全过程。
订阅专栏 解锁全文
679

被折叠的 条评论
为什么被折叠?



