Python pandas 数据清洗与数据绘图实战

本文深入探讨了Python数据科学中常用的pandas库在数据清洗和绘图方面的应用。首先介绍了Python和Jupyter记事本在数据探索中的重要性,然后详细讲解了pandas的数据结构和功能,包括数据加载、数据清洗、数据聚合,以及如何用matplotlib进行数据可视化。通过实例展示了如何使用pandas处理和分析数据,以及如何通过matplotlib创建图表。文章最后还提供了一个全球气温变化的数据清洗和绘图实战案例,演示了如何从数据获取到数据绘图的全过程。
摘要由CSDN通过智能技术生成

1、Python数据探索

Python已成为数据科学的主要语言之一,并继续在数据科学领域不断壮大。如前所述,就原始性能而言,Python并不总是速度最快的语言。但是有些数据处理库(如NumPy)主要用C语言编写,并且经过大量优化,以至于速度不再是问题。

此外,对可读性和可访问性的考虑往往超过了纯粹的速度需求,最大程度地节省开发人员的时间往往更为重要。Python具有较好的可读性和可访问性,并且无论是单独使用还是与Python社区开发的工具相结合,都是极其强大的数据操作和探索工具。

数十年来,电子表格一直是即兴(ad-hoc)数据处理的首选工具。熟悉电子表格的人能够发挥出着实惊人的技巧,可以组合有关联的不同数据集、数据透视表,可以用查找表链接数据集等。尽管每天到处都有人用电子表格完成了大量工作,但它确实存在局限性,Python就能有助于超越这些限制。

之前已经提到过的一个限制是,大多数电子表格软件都有行数限制,目前大约是100万行,这对于许多数据集来说是不够用的。另一个限制就是电子表格本身的寓意。电子表格是二维网格,就是行和列,顶多也就是一堆的网格,这限制了复杂数据的操作与思维方式。

有了Python,就可以绕开电子表格的限制编写代码,按照希望的方式操作数据。可以用无限灵活的方式组合Python数据结构,如列表、元组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wespten

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值