拆解gif为图片

import os
from PIL import Image, ImageSequence


def parseGIF(gifname):
    # 将gif解析为图片
    # 读取GIF
    im = Image.open(gifname)
    # GIF图片流的迭代器
    iter = ImageSequence.Iterator(im)
    # 获取文件名
    file_name = gifname.split("\\")[-1]
    index = 1
    # 判断目录是否存在
    pic_dirct = "imgs/{0}".format(file_name)
    mkdirlambda = lambda x: os.makedirs(
        x) if not os.path.exists(x) else True  # 目录是否存在,不存在则创建
    mkdirlambda(pic_dirct)
    # 遍历图片流的每一帧
    for frame in iter:
        print("image %d: mode %s, size %s" % (index, frame.mode, frame.size))
        frame.save("imgs/%s/frame%d.png" % (file_name, index))
        index += 1

    # frame0 = frames[0]
    # frame0.show()

    # 把GIF拆分为图片流
    imgs = [frame.copy() for frame in ImageSequence.Iterator(im)]
    # 把图片流重新成成GIF动图
    imgs[0].save('out.gif', save_all=True, append_images=imgs[1:])

    # 图片流反序
    imgs.reverse()
    # 将反序后的所有帧图像保存下来
    imgs[0].save('./reverse_out.gif', save_all=True, append_images=imgs[1:])


if __name__ == "__main__":
    parseGIF("E:\Server\GAN_gen\generated-04-20-2021_06-31-40.gif")

详见:添加链接描述

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值