数据融合

本文探讨了三种核心的数据融合方法:基于阶段的融合,适用于数据挖掘的不同阶段;基于特征的融合,通过深度神经网络重新表示原始特征;基于语义的融合,包括基于多视角、相似性、概率依赖及迁移学习的融合策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三种能够多源数据融合的方法。


1、基于阶段的融合方法:
在数据挖掘任务的不同阶段使用不同的数据集。

2、基于特征的融合方法:利用深度神经网络(DNN)对从不同数据集中提取的原始特征进行了新的表示。新的特征表示将被输入到另一个模型中进行分类或预测。

3、基于语义的融合方法:根据语义的不同将数据进行融合,有四种方法: (1)基于多视角的方法 (2)基于相似性的方法(3)基于概率依赖的方法 (4)基于迁移学习的方法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值