【机器学习300问】76、早停法(Early Stopping)是如何防止过拟合的?

本文介绍了早停(EarlyStopping)这一防止过拟合的深度学习训练策略,通过监测验证集损失函数,当性能不再提升时停止训练。它有助于节约计算资源,但需注意验证集的选择和对噪声的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        本文带大家介绍一个非常简单的防止过拟合的方法——早停(Early Stopping),首先给出概念,然后通过损失图像来加深对它的理解。

一、早停是什么呀?

        早停(Early Stopping)是一种常用的深度学习模型训练策略,旨在防止模型在训练过程中过拟合训练数据,提高其泛化能力。

        早停的核心原理:当模型在验证集上的性能开始下降之前停止训练。

 二、验证集上的损失函数随迭代轮次变化的图像

        早停法通过在训练过程中监控某个验证指标,并在该指标停止改善或开始恶化时提前终止训练过程,从而避免不必要的计算资源消耗和潜在的过拟合风险。

        而这个监控指标通常是验证集上的损失函数,它反映了模型在未见过的数据上的表现,与仅关注训练集损失相比,更能反映模型的泛化能力。在每个训练周期(多个epoch)结束后,计算选定的验证指标。记录下每次迭代后的指标值画出图像如下。

        上面这个图收敛的非常好,是一个低偏差、低方差的好模型。然而事实上很多情况下,我们得到的模型是下面这种情况:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值