判断点是否在点组成的封闭区域内c++

大致方法可以有3种:

方法1:面积法

判断目标点与多边形的每条边组成的三角形面积和是否等于该多边形,相等则在多边形内部。

方法2:角度法

判断目标点与所有边的夹角和是否为360度,为360度则在多边形内部。

方法3:射线法

从目标点出发引一条射线,看这条射线和多边形所有边的交点数目:
如果有奇数个交点,则说明在内部
如果有偶数个交点,则说明在外部

方法1,2对精度要求高,且计算效率较低,故经常使用射线法;

射线法逻辑:

从点P作y轴正向的射线:

(1)若射线与多边形的交点为奇数,则P在多边形内部;

(2)若射线与多边形的交点为偶数,则P在多边形外部。

特殊情况(若边为(P1,P2)):

(1)如果射线正好穿过P1或者P2点,那么这个交点会被算作2次,处理办法取(P1,P2];
(2)如果边与射线平行,则射线要么与其无交点,要么有无数个,这种情况也直接忽略;(实际上,此类情况存在bug)
(3)如果边与射线垂直,而P的y坐标小于P1,P2的y坐标,则必然相交;
(4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。

射线法c++实现代码:

struct Point
{
    double x;
    double y;
    double z;
};
bool IsPointInPolygon(const Point& vtPoint, const vector<Point>& vecPoints)
{
	bool bResult = false; //判断结果(true;点落在多边形内;false:点未落在多边形内)
	int nSize = vecPoints.size();
	int pre = nSize - 1;//nSize -1 是多边形的最后一个顶点
	for (int cur = 0; cur < nSize; ++cur)
	{
		//判断点是否在线段的两侧
		if ((vecPoints[cur].x < vtPoint.x && vecPoints[pre].x >= vtPoint.x) 
            || (vecPoints[pre].x < vtPoint.x && vecPoints[cur].x >= vtPoint.x))
		{
			//根据两点式方程计算出过点P且平行于X轴的直线与线段的交点,两点式方程:
            // y = p1.y + (p.x - p1.x) * (p2.y - p1.y) / (p2.x - p1.x)
            double line_p_y = vecPoints[cur].y + (vtPoint.x - vecPoints[cur].x) * (vecPoints[pre].y - vecPoints[cur].y)
                                /  (vecPoints[pre].x - vecPoints[cur].x);
			if (line_p_y > vtPoint.y)
			{
                bResult = !bResult;
            }
            else if(line_p_y == vtPoint.y)
            {
                return true;
            }
		}

		//进行下一线段判断
		pre = cur;
	}

	return bResult;
}

<think>好的,我现在需要帮用户解决如何在C++11中实现找到多边形封闭轮廓内部且不在轮廓线上的网格算法。首先,我得理解用户的需求。他们想要一个算法输入是多边形的封闭轮廓,输出是内部所有网格,且这些不在轮廓线上。这个需求可能应用在计算机图形学、地理信息系统或者游戏开发中的网格生成等方面。 接下来,我需要回忆相关的算法数据结构。常见的方法包括扫描线填充算法、射线法或者栅格化方法。但用户特别提到要排除轮廓线上的,所以需要检测是否在多边形边界上。可能还需要处理复杂多边形,比如带孔洞的情况,不过用户的问题中只提到封闭轮廓,暂时假设是简单多边形。 首先,确定是否在多边形内部。常用的方法有射线法:从向任意方向发射线,计算与多边形边的交数量,奇数次则在内部,偶数次在外部。但这种方法需要处理各种边界情况,比如射线穿过顶或者与边重合。 然后,确定是否在轮廓线上。这需要检查是否位于多边形的任何一条边上。可以用与线段的位置关系来判断,比如计算到线段的最短距离是否小于某个容差,并且是否在线段的投影范围内。 接下来,考虑如何生成网格。可能需要先生成一个覆盖多边形区域的网格,然后逐个检查每个网格是否符合条件。或者,根据多边形的包围盒生成网格,再进行筛选。 现在,结合C++11的特性,比如使用STL容器来存储和多边形边,利用lambda表达式和算法库来简化代码。例如,用std::vector存储多边形的顶,生成网格时使用循环遍历每个可能的坐标,然后应用上述判断。 需要注意性能问题,特别是对于大的多边形或高密度网格,可能需要优化。比如,先计算多边形的轴对齐包围盒(AABB),只在这个范围内生成网格,减少不必要的计算。此外,预处理多边形的边,存储为方便计算的结构,如线段的两端坐标,或者参数方程形式。 另外,容差处理也很重要。由于浮数精度问题,判断是否在边上时可能需要设定一个小的epsilon值,比如1e-6,避免因为精度误差导致的误判。 可能的步骤: 1. 计算多边形的AABB,确定网格的范围。 2. 生成所有网格坐标。 3. 对每个,使用射线法判断是否在内部。 4. 对在内部的,进一步检查是否在任何边上,排除轮廓线上的。 5. 收集符合条件的。 关于射线法的实现细节,需要注意处理射线与边重合的情况,以及顶处的处理。例如,当射线穿过顶时,需要确定该顶是否算作交。通常的处理方式是,当射线穿过顶时,如果该顶是边的上端,则不计入交,避免重复计数。 在C++中,可能需要定义Point结构体,包含x和y坐标。多边形的边可以用线段结构体,包含起和终判断是否在线段上,可以通过向量叉积和积来判断。例如,先判断是否在线段的延长线上,再判断是否在线段的范围内。 代码结构可能如下: - 定义Point结构体。 - 定义多边形为vector<Point>。 - 生成网格,遍历AABB内的每个整数坐标。 - 对每个,执行射线法和边检查。 - 收集结果。 测试用例也很重要,比如简单矩形、凸多边形、凹多边形,确保算法正确性。 可能的问题: - 如何处理带孔洞的多边形?用户提到的是封闭轮廓,可能不包含孔洞,但需要确认是否需要扩展。 - 性能优化,比如使用更快的包容算法,或者空间划分结构加速。 参考引用中提到耳切法三角剖分[^1],可能相关,但用户的问题更关注网格的生成,而不是三角化。引用[3]提到外扩后生成三角形网格,可能对网格生成有帮助,但当前问题更基础。 总结,算法的大致流程是生成网格判断内部,排除边界。现在需要将这些步骤转化为C++11代码,注意效率和正确性。</think>### C++11实现多边形内部网格检测算法 #### **1. 定义数据结构和预处理** ```cpp #include <vector> #include <algorithm> #include <cmath> struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; using Polygon = std::vector<Point>; using Edge = std::pair<Point, Point>; // 容差设置 constexpr double epsilon = 1e-6; // 生成多边形边集合 std::vector<Edge> getEdges(const Polygon& poly) { std::vector<Edge> edges; for (size_t i = 0; i < poly.size(); ++i) { edges.emplace_back(poly[i], poly[(i+1)%poly.size()]); } return edges; } ``` #### **2. 射线法判断是否在内部** ```cpp bool isPointInsidePolygon(const Point& p, const Polygon& poly) { int count = 0; for (const auto& edge : getEdges(poly)) { const Point& a = edge.first; const Point& b = edge.second; // 处理垂直射线与边相交的情况 if ((a.y > p.y) != (b.y > p.y)) { double intersectX = (p.y - a.y) * (b.x - a.x)/(b.y - a.y) + a.x; if (p.x < intersectX + epsilon) ++count; } } return (count % 2) == 1; } ``` #### **3. 判断是否在边线上** ```cpp bool isPointOnEdge(const Point& p, const Edge& e) { const Point& a = e.first; const Point& b = e.second; // 向量叉积判断共线 double cross = (p.x - a.x)*(b.y - a.y) - (p.y - a.y)*(b.x - a.x); if (std::abs(cross) > epsilon) return false; // 判断投影范围 double dot = (p.x - a.x)*(b.x - a.x) + (p.y - a.y)*(b.y - a.y); if (dot < 0) return false; double len2 = (b.x - a.x)*(b.x - a.x) + (b.y - a.y)*(b.y - a.y); return dot <= len2 + epsilon; } ``` #### **4. 主算法实现** ```cpp std::vector<Point> findInternalGridPoints( const Polygon& poly, double gridStep ) { std::vector<Point> result; std::vector<Edge> edges = getEdges(poly); // 计算包围盒 auto [minX, maxX] = std::minmax_element(poly.begin(), poly.end(), [](auto& a, auto& b){ return a.x < b.x; }); auto [minY, maxY] = std::minmax_element(poly.begin(), poly.end(), [](auto& a, auto& b){ return a.y < b.y; }); // 生成网格 for (double x = std::floor(minX->x/gridStep)*gridStep; x <= maxX->x; x += gridStep) { for (double y = std::floor(minY->y/gridStep)*gridStep; y <= maxY->y; y += gridStep) { Point p(x, y); if (isPointInsidePolygon(p, poly)) { bool onEdge = std::any_of(edges.begin(), edges.end(), [&p](const Edge& e){ return isPointOnEdge(p, e); }); if (!onEdge) result.push_back(p); } } } return result; } ``` #### **5. 性能优化建议** - 使用整数网格坐标避免浮误差 - 空间划分加速:使用四叉树或网格索引 - 并行计算:C++11的`<thread>`库实现多线程 ```cpp // 示例:并行处理x轴范围 std::vector<std::thread> workers; for (int i=0; i<thread_num; ++i) { workers.emplace_back([&](int start, int end){ // 处理x范围[start, end] }, i*segment, (i+1)*segment); } ``` #### **6. 测试用例** ```cpp // 测试正方形多边形 Polygon square = {{0,0}, {0,5}, {5,5}, {5,0}}; auto points = findInternalGridPoints(square, 1.0); // 应得到(1,1),(1,2)...(4,4)等16个 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和道一文字_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值