深度学习图像目标检测综述(二)

2 篇文章 0 订阅
2 篇文章 0 订阅

Faster-RCNN

论文链接:https://arxiv.org/abs/1506.01497
作者信息:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
检测模型经历了RCNN----Fast RCNN的变迁,通过联合交叉熵loss和均方误差loss进行统一训练的方式提高模型收敛速度,增加目标检测的准确度。但是候选框的提议仍基于selective-search这种比较原始的方式。
Fster-RCNN最大亮点,是提出了RPN(Region Propoal Net)。RPN提出Feature map的anchor(锚点)概念,其认为在经过卷积核卷积过后的feature map上的每个像素点,拥有相对于图像像素更大的感受野。基于feature map中的每个锚点,RPN通过自学习的方式,学习该锚点在反向映射到原图的区域位置。

Faster-RCNN的训练过程分为:
1.训练RPN
2.基于RPN的区域提议,训练Fast-RCNN
3.用Fast-RCNN初始化RPN,之后冻结共享层,微调RPN独有层
4.冻结RPN,微调Fast-RCNN参数

Faster-RCNN模型架构如图所示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值