Faster-RCNN
论文链接:https://arxiv.org/abs/1506.01497
作者信息:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
检测模型经历了RCNN----Fast RCNN的变迁,通过联合交叉熵loss和均方误差loss进行统一训练的方式提高模型收敛速度,增加目标检测的准确度。但是候选框的提议仍基于selective-search这种比较原始的方式。
Fster-RCNN最大亮点,是提出了RPN(Region Propoal Net)。RPN提出Feature map的anchor(锚点)概念,其认为在经过卷积核卷积过后的feature map上的每个像素点,拥有相对于图像像素更大的感受野。基于feature map中的每个锚点,RPN通过自学习的方式,学习该锚点在反向映射到原图的区域位置。
Faster-RCNN的训练过程分为:
1.训练RPN
2.基于RPN的区域提议,训练Fast-RCNN
3.用Fast-RCNN初始化RPN,之后冻结共享层,微调RPN独有层
4.冻结RPN,微调Fast-RCNN参数
Faster-RCNN模型架构如图所示: