根的存在性证明

在高等数学中经常会出现一类题:即证明根的存在性。今天就来借两道经典的母题来对此类题目的证明做个总结。

一、此类题目的两种思路

证明连续函数f(x)在区间[a,b]上根的存在性,最常用的思路有两种:

1、利用零点定理。也就是说只要证明f(x)在[a,b]存在两点c<d(可能有c=a,b=d,但也可能没有),且f(c)*f(d)<0即可,那么f(x)在[c,d]上必存在零根。

2、利用罗尔定理。首先构造f(x)的原函数F(X)(即F’(x)=f(x)),然后证明在[a,b]上有点c,d(c<d,可能有c=a,b=d,也可能没有),使得F(c)=F(d),那么根据罗尔定理,在[c,d]上必有一点t,使得F’(t)=0,也就是f(t)=0,因此题目得证。

解答这类题目,关键还在于多练习,多做题目找感觉和经验,尤其是对于F(x)的构造,技巧性较大,更加需要经验的积累。本文的最后会给出常见的F(x)的构造方法。


二、一道典型例题,小试牛刀

下面我我们就来证明一道典型的例题来试一试上面的两种思路吧。

题目:已知 \[{a_0} + \left( {​{a_1}/2} \right) + \left( {​{a_2}/3} \right) + \ldots + \left( {​{a_n}/\left( {n + 1} \right)} \right) = 0\] ,证明方程 \[{a_0} + {a_1}x + \ldots + {a_n}{x^n} = 0\] 在(0,1)上至少有一个根。

解法一:我们利用零点定理来解答。我们直接令

\[f\left( x \right) = {\rm{ }}{a_0} + {a_1}x + \ldots + {a_n}{x^n}\]

然后观察anxn与an/(n+1)这两项的关系,发现有 \[\int_0^1 {​{a_n}{x^n}dx} = \frac{​{​{a_n}}}{​{n + 1}}\] ,那么我们就可以得到

\[\begin{array}{l} \int_0^1 {f\left( x \right)} dx = {\rm{ }}\int_0^1 {​{a_0} + {a_1}x + \ldots + {a_n}{x^n}} dx\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {​{a_0} + \frac{​{​{a_1}}}{2} + ... + \frac{​{​{a_n}}}{​{n + 1}}} \right)\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 0 \end{array}\]

如果f(x)在(0,1)上恒大于0,那必有 \[\int_0^1 {f\left( x \right)dx} > 0\] 矛盾,如果f(x)在(0,1)上恒小于0,则有 \[\int_0^1 {f\left( x \right)dx} < 0\] 矛盾。因此在(0,1)内必有两点c<d,使得f(c)*f(d)<0。根据零点定理,f(x)在(c,d)上必有零根,即在(0,1)上必有零根,也即 \[{a_0} + {a_1}x + \ldots + {a_n}{x^n} = 0\] 在(0,1)上必有零根,题目得证。

解法二:利用罗尔定理来证明。同样是要观察anxn与an/(n+1)这两项的关系,其实除了解法一中的积分关系,还有求导关系,也就是有 \[{\left( {\frac{​{​{a_n}{x^{n + 1}}}}{​{n + 1}}} \right)^\prime } = {a_n}{x^n}\] ,因此我们可以构造一个新的函数,如下


\[f\left( x \right) = {a_0}x + \frac{​{​{a_1}{x^2}}}{2} + ... + \frac{​{​{a_n}{x^{n + 1}}}}{​{n + 1}}\]

显然有f(0)=0,又根据已知条件有 \[f\left( 1 \right) = {a_0} + \left( {​{a_1}/2} \right) + \left( {​{a_2}/3} \right) + \ldots + \left( {​{a_n}/\left( {n + 1} \right)} \right) = 0\] ,因此有f(0)=f(1),我们根据罗尔定理必有f’(x)在(0,1)上有根。也就是 \[f'\left( x \right) = {\rm{ }}{a_0} + {a_1}x + \ldots + {a_n}{x^n}\] 在(0,1)上有根。题目得证。

点睛:无论是解法一还是解法二,最核心的地方就在于要观察到anxn与an/(n+1)有什么样的关系,如此方能构造出合适的函数。因此我们在做题时,如果暂时没有思路,一定要多观察,多试错,试着试着就找到了突破口了。


三、利用罗尔定理解题时,常用的辅助函数总结

经过很多题目的经验积累,在遇到下面的情况时,可以按照表格中的总结来构造适用于罗尔定理的函数。如下表(此表非常有用):

有了上表,你可能还不知道怎么来用。没关系,看下面一道例题,就明白了。


例题:f(x)与g(x)在(a,b)上可导,且有f(a)=f(b)=0,试证明在(a,b)上存在一点ζ,使得f’(ζ)+f(ζ)g’(ζ)=0。

证明:我们将f’(ζ)+f(ζ)g’(ζ)=0与上表对照,是不是跟第四行的原式那一列非常相像,从而所构造的辅助函数就为F(x)=f(x)*eg(x)。

因此,我们构造函数F(x)=f(x)*eg(x),根据题目易得F(a)=F(b)=0,那么根据罗尔定理就有在(a,b)上存在一点ζ使得F’(ζ)=0,即f’(ζ)*eg(ζ)+f(ζ)*eg(ζ)*g’(ζ)=0,我们约去eg(ζ),就得到f’(ζ)+f(ζ)g’(ζ)=0。题目得证。


点睛:解答这类题目,关键要对照表格,把合适的辅助函数给找出来。

  • 9
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值