原根的存在性 相关定理 (一)

本文深入探讨了奇素数p下的原根性质,包括引理1证明奇数a的幂模2k的关系,推论2指出2k无原根,引理3和推论4展示了模pk原根的传递性,定理5和6确定了模p2原根的特定形式和所有原根集合,最后定理7证明了存在一个正整数r是所有pk的原根。
摘要由CSDN通过智能技术生成

索引

引理1 设 a a a是奇数, k ∈ Z ≥ 3 k\in { {\mathbb{Z}}_{\ge 3}} kZ3, 成立 a 2 k − 2 ≡ 1     m o d   2 k . { {a}^{ { {2}^{k-2}}}}\equiv 1\text{ }\bmod { {2}^{k}}. a2k21 mod2k.

证明
第一步, 当 k = 3 k=3 k=3时, 需证明
a 2 3 − 2 = a 2 ≡ 1     m o d   8. (1.1) { {a}^{ { {2}^{3-2}}}}={ {a}^{2}}\equiv 1\text{ }\bmod 8. \tag{1.1} a232=a21 mod8.(1.1)
由于 a a a是奇数, 设 a = 2 a 1 + 1 ,   a 1 ∈ Z a=2{ {a}_{1}}+1,\text{ }{ {a}_{1}}\in \mathbb{Z} a=2a1+1, a1Z. 则成立
a 2 = ( 2 a 1 + 1 ) 2 = 4 a 1 ( a 1 + 1 ) + 1. (1.2) { {a}^{2}}={ {\left( 2{ {a}_{1}}+1 \right)}^{2}}=4{ {a}_{1}}\left( { {a}_{1}}+1 \right)+1. \tag{1.2} a2=(2a1+1)2=4a1(a1+1)+1.(1.2)
由于 a 1 ,   a 1 + 1 { {a}_{1}},\text{ }{ {a}_{1}}+1 a1, a1+1一定是一奇一偶, 因此有 2 ∣ a 1 ( a 1 + 1 ) \left. 2 \right|{ {a}_{1}}\left( { {a}_{1}}+1 \right) 2a1(a1+1), 即有
8 ∣ 4 a 1 ( a 1 + 1 ) . (1.3) \left. 8 \right|4{ {a}_{1}}\left( { {a}_{1}}+1 \right). \tag{1.3} 84a1(a1+1).(1.3)
由式(1.2), 式(1.3), 得式(1.1)成立.

第二步, 设 2 k − 2 ≡ 1     m o d   2 k { {2}^{k-2}}\equiv 1\text{ }\bmod { {2}^{k}} 2k21 mod2k, 则 ∃ d ∈ Z \exists d\in \mathbb{Z} dZ, 使得
a 2 k − 2 = 2 k d + 1. (1.4) { {a}^{ { {2}^{k-2}}}}={ {2}^{k}}d+1. \tag{1.4} a2k2=2kd+1.(1.4)
式(1.4)两边平方, 得到
a 2 k − 1 = ( 2 k d + 1 ) 2 = 2 2 k d 2 + 2 k + 1 d + 1 = 2 k + 1 ( 2 k − 1 d 2 + d ) + 1 ≡ 1     m o d   2 k + 1 . { {a}^{ { {2}^{k-1}}}}={ {\left( { {2}^{k}}d+1 \right)}^{2}}={ {2}^{2k}}{ {d}^{2}}+{ {2}^{k+1}}d+1={ {2}^{k+1}}\left( { {2}^{k-1}}{ {d}^{2}}+d \right)+1\equiv 1\text{ }\bmod { {2}^{k+1}}. a2k1=(2kd+1)2=22kd2+2k+1d+1=2k+1(2k1d2+d)+11 mod2k+1.
由第一数学归纳法, 引理1得证.

推论2  ∀ k ∈ Z ≥ 3 \forall k\in { {\mathbb{Z}}_{\ge 3}} kZ3, 2 k { {2}^{k}} 2k一定没有原根.

证明 任取 a ∈ Z ≠ 0 a\in { {\mathbb{Z}}_{\ne 0}} aZ=0, 若 a a a是偶数, 则 gcd ⁡ ( a , 2 k ) ≥ 2 ≠ 1 \gcd \left( a,{ {2}^{k}} \right)\ge 2\ne 1 gcd(a,2k)2=1. 由博文《指数和原根》中的定理12, 不存在 d ∈ Z > 0 d\in { {\mathbb{Z}}_{>0}} dZ>0, 使得 a d ≡ 1     m o d   2 k { {a}^{d}}\equiv 1\text{ }\bmod { {2}^{k}} ad1 mod2k, 也就不存在指数与原根的概念. 因此只需要考虑 a a a是奇数的情况. 一方面, 由引理1, 成立
a 2 k − 2 ≡ 1     m o d   2 k . { {a}^{ { {2}^{k-2}}}}\equiv 1\text{ }\bmod { {2}^{k}}. a2k21 mod2k.
另一方面, 成立
φ ( 2 k ) = 2 k − 1 ( 2 − 1 ) = 2 k − 1 > 2 k − 2 . \varphi \left( { {2}^{k}} \right)={ {2}^{k-1}}\left( 2-1 \right)={ {2}^{k-1}}>{ {2}^{k-2}}. φ(2k)=2k1(21)=2k1>2k2.
因此 φ ( 2 k ) \varphi \left( { {2}^{k}} \right) φ(2k) a a a对模 2 k { {2}^{k}} 2k的指数, a a a不是 2 k { {2}^{k}} 2k的原根.

引理3  p p p是一个奇素数, k ∈ Z ≥ 1 k\in { {\mathbb{Z}}_{\ge 1}} kZ1. 若 r r r是模 p k + 1 { {p}^{k+1}} pk+1的原根, 则 r r r也是模 p k { {p}^{k}} pk的原根.

证明
r r r是模 p k + 1 { {p}^{k+1}} pk+1的原根, 则由博文《指数和原根》中的定理12, 成立
gcd ⁡ ( r , p k + 1 ) = 1   ⇒   gcd ⁡ ( r , p k ) = 1. \gcd \left( r,{ {p}^{k+1}} \right)=1\text{ }\Rightarrow \text{ }\gcd \left( r,p^k \right)=1. gcd(r,pk+1)=1  gcd(r,pk)=1.
因此模 p k { {p}^{k}} pk的原根存在. 基于此, 若 r r r不是模 p k { {p}^{k}} pk的原根, 则 ∃ d ∈ Z > 0 \exists d\in { {\mathbb{Z}}_{>0}} dZ>0, d < φ ( p k ) = p k − 1 ( p − 1 ) d<\varphi \left( { {p}^{k}} \right)={ {p}^{k-1}}\left( p-1 \right) d<φ(pk)=pk1(p1), 成立
r d ≡ 1     m o d   p k . { {r}^{d}}\equiv 1\text{ }\bmod { {p}^{k}}. rd1 modpk.
∃ c ∈ Z \exists c\in \mathbb{Z} cZ, 使得
r d = c p k + 1. { {r}^{d}}=c{ {p}^{k}}+1. rd=cpk+1.
k ∈ Z ≥ 1 k\in { {\mathbb{Z}}_{\ge 1}} kZ1, 2 k ≥ k + 1   ⇒   p k + 1 ∣ p 2 k 2k\ge k+1\text{ }\Rightarrow \text{ }\left. { {p}^{k+1}} \right|{ {p}^{2k}} 2kk+1  pk+1p2k, 因此 ∀ x ∈ Z > 0 \forall x\in { {\mathbb{Z}}_{>0}} xZ>0. 成立
( r d ) x = ( c p k + 1 ) x ≡ 1 + x c p k     m o d   p k + 1 . (3.1) { {\left( { {r}^{d}} \right)}^{x}}={ {\left( c{ {p}^{k}}+1 \right)}^{x}}\equiv 1+xc{ {p}^{k}}\text{ }\bmod { {p}^{k+1}}. \tag{3.1} (rd)x=(cpk+1)x1+xcpk modpk+1.(3.1)
由式(3.1), 成立等价关系
( r d ) x ≡ 1     m o d   p k + 1 .  ⇔   x c p k ≡ 0     m o d   p k + 1 .  ⇔   x c ≡ 0     m o d   p . (3.2) { {\left( { {r}^{d}} \right)}^{x}}\equiv 1\text{ }\bmod { {p}^{k+1}}\text{. }\Leftrightarrow \text{ }xc{ {p}^{k}}\equiv 0\text{ }\bmod { {p}^{k+1}}\text{. }\Leftrightarrow \text{ }xc\equiv 0\text{ }\bmod p. \tag{3.2} (rd)x1 modpk+1 xcpk0 modp<

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值