深度学习
文章平均质量分 68
上进的小菜鸟
好好学习天天向上
展开
-
使用KNN根据深度自编码器降维特征识别MNIST数据集手写体数字(pytorch+scikit learn)
目标:实现无监督的数据降维,并根据降维信息实现KNN分类内容:1.自编码器降维自编码器是为使神经网络学习数据原始特征,将高维数据特征用低维数据特征表示,是一种无监督的表征学习方法。其包含编码器部分和解码器部分,编码器负责学习数据的低维嵌入特征,解码器负责将编码学习到的低维特征重新构建回原始数据特征,俩者就好像数据通信的编码和解码过程。自编码器一般使用MSE损失函数,使重构建的特...原创 2019-11-27 17:48:40 · 1664 阅读 · 2 评论 -
下载任意版本cuda的网址
包含全部cuda版本,选择版本,选择操作系统后直接下载https://developer.nvidia.com/cuda-toolkit-archive以下链接也可以:Latest ReleaseCUDA Toolkit 10.2(Nov 2019),Versioned Online DocumentationArchived ReleasesCUDA Toolkit 10...原创 2019-11-22 10:14:20 · 999 阅读 · 0 评论 -
无人机集群目标检测和追踪方法学习(一)MCDT方法
论文:Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles概要:通过无人机集群(多架无人机协作,MAVs)的摄像头,对人体或动物目标进行检测和追踪,提出multirobot cooperative detection and tracking (MCDT)...原创 2019-11-12 16:55:44 · 8692 阅读 · 2 评论 -
使用vgg16网络完成多标记分类任务代码(tensorflow框架)
github下载链接:https://github.com/A-mockingbird/VGG16ForMultilabelClassification# 1.读取多标记分类数据集,将数据集分割,存储为tfrecords格式新建文件ReadMultilabelDataset.pyimport jsonimport osimport randomimport numpy ...原创 2019-10-25 15:17:05 · 1734 阅读 · 3 评论 -
Linux系统下搭建(更新)cuda环境
本人之前ubuntu系统装的是cuda8,因为模型需要升级cuda,因此重新装cuda10安装和更新cuda和cudnn以及安装和更新显卡驱动,下面操作都适合# 一.安装(升级)显卡驱动升级cuda之前,先要升级显卡驱动,登陆网页https://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动,给我推荐的最新驱动是下载好后...原创 2019-10-24 15:47:12 · 8678 阅读 · 0 评论 -
提取自制VOC数据集中测试集的标签和图像
最新实现版本https://blog.csdn.net/qq_35153620/article/details/102657940根据自制VOC检测数据集中ImageSets/Main/test.txt文件中的数据将测试集的标签和图像从数据集中提取出来1.提取测试集标签文件:将数据集的Annotations(存放标签文件夹)复制一个,重命名为train,写入anno_path新建一...原创 2019-07-05 16:29:13 · 2750 阅读 · 2 评论 -
读取tensorboard数据并可视化
使用tensorboard可以很好的记录tensorflow在训练模型中的一些变量值,尤其loss值,然而tensorboard自带的可视化工具并不能随意设置绘图信息,我们通过读取tensorboard的数据,然后使用matplotlib对数据进行可视化分析代码:from tensorboard.backend.event_processing import event_accumu...原创 2019-07-29 11:13:41 · 4189 阅读 · 1 评论 -
tensorflow训练异常:OutOfRangeError (see above for traceback): PaddingFIFOQueue
在进行Cascade R-CNN训练时遇到的错误:OutOfRangeError (see above for traceback): PaddingFIFOQueue '_2_get_batch/batch/padding_fifo_queue' is closed and has insufficient elements (requested 1, current size 0) [[N...原创 2019-07-29 11:18:45 · 1426 阅读 · 0 评论 -
目标检测数据集预处理:图像增强之目标遮挡
目标检测任务中常常会遇到图像中目标被遮挡严重的问题,由于遮挡数据复杂多样,遮挡信息丢失严重,模型在训练过程中往往陷入过拟合问题,对训练集中外的数据检测效果下降,在模型层面很难做到很好的改善,这时候就需要我们对数据集进行预处理,一般的方法就是进行图像增强,获取大量的差异性数据增强数据集,生成更多的数据,改善过拟合问题。本文主要针对大量遮挡目标任务进行数据集增强,通过对目标的部分位置进行遮挡,生成...原创 2019-08-19 20:22:57 · 9480 阅读 · 7 评论 -
使用cascade r-cnn模型自动标注目标检测任务数据集
首先你要根据之前的博文训练cascade r-cnn模型博文地址:https://blog.csdn.net/qq_35153620/article/details/94718986训练的数据根据你实际需要设定,例如 :1. 你可以部分标记你的数据集,然后训练部分标记好的数据,在自动标注你未标注的数据,以节省标注时间 2. 你可以使用检测任务相同或类似的已...原创 2019-09-02 17:55:46 · 1335 阅读 · 0 评论 -
cascade r-cnn训练和测试(tensorflow框架)
基于tensorflow框架下的cascade r-cnn的训练和测试github代码:https://github.com/DetectionTeamUCAS/Cascade-RCNN_Tensorflow环境:python = 2.7tensorflow-gpu = 1.3cuda8gpu:1080Ti1.下载预训练模型resnet101:http://d...原创 2019-07-05 11:35:21 · 7221 阅读 · 73 评论 -
softer-nms论文学习详解(Bounding Box Regression with Uncertainty for Accurate Object Detection)
《Bounding Box Regression with Uncertainty for Accurate Object Detection》论文地址:https://arxiv.org/pdf/1809.08545.pdf论文是face++和卡耐基梅隆大学提出的,用于解决边界框回归不确定不精准的问题。提出了俩个联合使用的方法,其一是提出用KL Loss,第二点是提出var voti...原创 2019-06-17 11:16:08 · 1990 阅读 · 0 评论 -
Faster R-CNN训练代码解析(tensorflow版本)
本解析使用的faster r-cnn代码github为https://github.com/endernewton/tf-faster-rcnn使用微软自带的onenote做的笔记,只能生成pdf,下载地址:https://download.csdn.net/download/qq_35153620/11234545如有错误或者想法建议也请大家多多讨论交流,谢谢啦截图示例:...原创 2019-06-10 21:53:38 · 1293 阅读 · 0 评论 -
keras可视化模型结构
#需要安装pydot模块#输出保存为model.png#model是训练好的模型#model = load_model('path')from keras.utils import plot_modelplot_model(model, to_file='model.png') 输出结果:...原创 2018-12-05 21:42:13 · 1602 阅读 · 0 评论 -
TensorFlow框架下特征映射的可视化
在做深度学习的研究中,对每一层的特征映射进行可视化分析是必要本文主要介绍遇见的两种情况下的特征映射可视化问题本文使用matplotlib模块和numpy模块进行显示图片的操作没有matplotlib模块和numpy模块需要先加载之后,首先在文件开头加入代码:import matplotlibfrom pylab import *一、一般情况本文以lenet5网络为示...原创 2018-12-21 10:48:11 · 4098 阅读 · 1 评论 -
Soft-NMS论文内容学习
NMS算法和Soft-NMS(soft non-maximum suppression algorithm)算法修正使用函数变换替代原有的边界框选取原变换为:Soft-NMS函数变换:非最大值抑制(non-maximum suppression,NMS)算法应用于检测框选择:检测框集合B,其对应的分数集合S,在S中找到最大值M,每一个B中其它的检测框与最大值M对应的...原创 2018-12-21 10:48:59 · 570 阅读 · 0 评论 -
Faster R-CNN的demo代码解析(tensorflow版本)
本解析使用的faster r-cnn代码github为https://github.com/endernewton/tf-faster-rcnn本文主要解析从/tools/demo.py文件开始使用微软自带的onenote做的笔记,只能生成pdf,再用wps转的图片,所以会有些模糊onenote记笔记很方便,也懒得再做一个cdsn版本的想要pdf高清原版或者onenote原版的...原创 2019-03-04 23:15:53 · 1511 阅读 · 19 评论 -
自建VOC数据集xml文件解析与操作实例(统计、删除、修改类别)附各实例程序代码
对xml的解析与操作在《python学习(二) ElementTree解析、读写、创建xml文件》一文中介绍完毕本文主要是使用ElementTree对VOC数据集的xml操作的实例化并附带一些实用小程序供大家参考使用,程序代码在下面的github网站中https://github.com/A-mockingbird/VOCtype-datasetOperation里面有统计VOC数...原创 2019-03-23 15:15:09 · 2389 阅读 · 0 评论 -
Focal Loss论文学习(含多分类任务下的focal loss公式)
Focal Loss for Dense Object DetectionFocal loss是17年由Facebook AI研究院提出发表的。目标检测深度学习的模型结构主流的以两种为主,one-stage和two-stage。由于one-stage的定位和类别预测有同一个网络输出,虽然速度上比two-stage的快,但精确度却由很大差距。Focal Loss的提出就是通过改变模型损失函数从而...原创 2019-05-09 22:09:44 · 15860 阅读 · 9 评论 -
faster r-cnn训练、测试、检测(含批量检测图片)
faster r-cnn(tensorflow版本)训练VOC数据集、测试、检测指南使用的faster r-cnn代码github地址https://github.com/endernewton/tf-faster-rcnngit下载:git clone https://github.com/endernewton/tf-faster-rcnn.git1.准备工作首先根据自...原创 2019-05-10 11:13:22 · 5103 阅读 · 14 评论 -
SEnet论文学习
SEnet是Momenta(一家国内专注于自动驾驶的公司)在ImageNet2017分类任务上夺冠的网络。ImageNet2017是最后一届ImageNet竞赛,SEnet有了很大的提高。 论文地址:https://arxiv.org/abs/1709.01507 github代码地址:https://github.com/hujie-frank/SENet 神经网络中的卷积...原创 2019-05-12 09:35:22 · 393 阅读 · 0 评论 -
GHM:Gradient Harmonized Single-stage Detector
本文针对目标检测中分布不均衡问题,提出了一个梯度均衡策略改善模型性能,被AAAI2019收录为oral。论文下载:https://arxiv.org/abs/1811.05181v1github代码地址:https://github.com/libuyu/GHM_Detection单阶段(one-stage)的目标检测模型存在类别不平衡问题,具体可参考我的另一篇博客文章,也是讨论此问题...原创 2019-05-23 16:41:12 · 1640 阅读 · 0 评论 -
使用keras框架编写的深度模型 输出及每一层的特征可视化
使用训练好的模型进行预测的时候,为分析效果,通常需要对特征提取过程中的特征映射做可视化操作本文以keras为例,对特征可视化操作进行详解。一、首先,对模型的最后输出层进行特征可视化from keras import models#使用matlpotlib模块进行绘图的操作import matplotlib.pylot as plt#images是一个batch的输入图像,b...原创 2018-12-05 21:24:05 · 6061 阅读 · 1 评论