《Bounding Box Regression with Uncertainty for Accurate Object Detection》
论文地址:
https://arxiv.org/pdf/1809.08545.pdf
论文是face++和卡耐基梅隆大学提出的,用于解决边界框回归不确定不精准的问题。提出了俩个联合使用的方法,其一是提出用KL Loss,第二点是提出var voting的候选框选择方法,俩者都是基于标准差(standard deviations)。
作者认为检测模型中的NMS使用score作为选择候选框的方法是不准确的,并不能选出符合真正目标位置的候选框。作者使用标准差(standard deviations)来改变这一问题,标准差越小,波动越小,越能代表准确的定位。
一.KL Loss替代Smooth L1 Loss
在边界框回归损失函数中加入标准差,因此首先需要模型能够预测标准差,作者在检测模型在预测边界框回归和分类概率的同时预测边界框的标准差,在fast r-cnn和Faster r-cnn中都是在fc7层之后加入预测标准差。如下图所示:
经过RoI pooling层后的特征经过俩次全连接层,预测其类别、边界框偏移以及边界框标准差(Box std)
作者为将标准差加入loss中,认为预测的边界框应该符合一个概率分布,为简化将其定义为高斯分布,