自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 为什么RAG技术需要知识向量化?通俗解析

知识向量化是RAG技术的核心,它将文本转化为多维向量,使AI能够理解语义相似性而非仅做关键词匹配。这种技术能实现快速检索、准确理解语境、动态更新知识库,并有效减少AI幻觉。通过向量化,RAG系统可以在海量信息中精准定位相关内容,让AI变得既博学又精确。

2025-03-16 19:37:19 650

原创 从模型到应用:大语言模型生态系统完全指南

本文全面解析了大模型应用生态:从基础模型、模型运行、模型优化、开发框架、中间件到应用层,为企业AI落地提供了清晰路线图。文章深入浅出地介绍了各层关键技术与工具,包括主流开源闭源模型、运行环境、优化方法、开发框架、AI Agent与向量数据库等中间件,以及低代码应用平台。这是一份帮助企业和个人理解大模型技术栈、选择适合工具、实现AI价值的实用指南。

2025-03-16 19:33:24 970

原创 五大法宝:让AI生成的SQL查询更准确

NL2SQL方案面临数据查询准确性问题,影响企业应用。提高准确性的方法包括:确保大模型具备必要背景知识、使用少样本提示、应用RAG技术、通过用户反馈微调模型,使用专有大语言模型。这些方法可提升SQL生成的准确性和模型性能。

2024-12-23 21:09:21 1646

原创 生成式AI与人工智能代理:深入理解差异与工作机制

生成式AI擅长于生成文本和图像,依赖于指令进行内容创作,缺乏自主性。人工智能代理则具备自主决策能力,能够设定目标并适应变化,处理复杂任务。它们通过持续学习和优化,提高工作效率,是未来AI应用的重要发展方向。

2024-12-21 19:12:54 881

原创 AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现

在现代数据分析中,NL2SQL系统通过大模型将自然语言查询转换为SQL语句,极大地简化了数据访问流程。系统的核心包括理解数据库模式、设计有效提示词、生成SQL、执行查询并进行可视化展示。通过记录和分析日志,系统不断优化大模型的提示词和参数设置,提升查询准确性和效率。日志不仅帮助识别性能瓶颈,还为系统的持续改进提供数据支持。最终,NL2SQL系统通过智能化的查询和可视化引擎,为用户提供了高效、直观的数据分析体验,推动了数据驱动决策的普及。

2024-12-21 19:00:21 1838

原创 微调框架Llama-factory和Unsloth:应该选择哪个?

测试表明,UNSLOTH和LLAMA-FACTORY在社区支持、模型种类和易用性上相近,但UNSLOTH在微调速度上表现突出。尽管处理的数据量是LLAMA-FACTORY的20倍,UNSLOTH的速度仍快约2.5倍,极大优化了时间成本,尤其在大规模数据处理中的效率优势显著。

2024-09-05 09:26:50 5286 4

原创 Unsloth微调环境搭建与LLaMA 3.1-8B模型微调实践指南

本文详细介绍了如何使用Unsloth框架在WSL环境下对LLaMA 3.1-8B模型进行微调的全过程。通过从环境搭建、微调过程等,读者可以一步步了解如何高效微调自己的专属模型,并通过实例演示了微调后模型的推理效果。本教程特别适合初学者,帮助他们快速掌握Unsloth框架的应用。

2024-09-05 09:20:15 2337

原创 Windows 11下RTX 4090深度学习及大模型微调环境安装指南

在安装深度学习及大模型微调环境时,经历了多次反复操作(如CUDA、cuDNN、PyTorch的安装与卸载)。为了避免走弯路,因此进行了安装后的总结,供大家参考。

2024-08-07 19:53:06 1796

原创 用ChatGPT解码北京积分落户的秘密:数据背后的真相

ChatGPT在数据分析领域展现出强大能力,将大幅提升工作效率,绝对可以替代部分程序员和数据分析师的角色。其在复杂数据处理、数据理解、交互式数据探索分析、数据可视化等各个方面提供了出色的表现。使得数据分析变得更加简便和高效。

2024-08-07 17:53:13 1105

原创 基于OBSIDIAN+Ollama+llama3.1构建个人智能助理

在人工智能(AI)领域, AI PC让我们重新定义智能办公和信息管理。但是,要真正实现这一愿景,我们必须考虑多个关键因素,包括隐私保护、数据安全等。在本文中,我们将使用OBSIDIAN+OLLAMA+llama 3.1-8b来搭建一个简易而高效的个人知识及工作智能助理,从而让您的日常办公、生活、学习更加便捷。

2024-08-07 17:45:40 1441

原创 提示词工程十大技巧:释放大模型潜力的最佳工具

本文强调了提示词工程在大模型应用中的核心地位,指出其灵活性和即时性优于微调。提示词工程通过明确指令、添加上下文、使用示例等方法,可以有效提高模型的响应准确性和质量,适用于各种复杂任务。本文总结了多种提示词技巧,如设定限制、角色扮演、逐步分解任务等,帮助用户更好地与大模型互动,从而提升工作和生活效率。

2024-08-07 17:36:21 1719

原创 如何制定有效的告警处置规范与标准 - 参考框架

本文基于项目经验,探讨了制定有效告警处置规范与标准的参考框架,涵盖告警级别定义、分类标准及其响应要求。通过明确告警级别,结合业务影响、用户影响、系统健康和安全风险等因素,制定合理的响应时间和处理流程。以期通过该体系保障系统的高可用性和稳定性,供大家参考。

2024-08-07 17:29:29 2066

原创 使用大模型进行SQL迁移的实践总结

在项目中,我们利用大模型将MySQL导出的SQL语句迁移为达梦信创数据库格式。通过几轮操作,我们发现提示词工程和提供示例对于大模型输出正确结果至关重要。

2024-07-11 18:58:54 679 1

原创 工业应用中的向量数据库与知识向量化存储方案

在工业应用中,向量数据库和知识向量化存储的建设涉及数据收集、预处理、向量化、数据库配置和索引构建等步骤。如何存储与向量相关的元数据,提高查询的丰富性和管理效率。最终,实现高效的企业知识管理和查询。

2024-06-03 16:12:48 1545

原创 父亲的秘密武器:用ChatGPT为孩子的夏令营之旅保驾护航

通过ChatGPT,我为Kevin设计了一次特别的英语口语训练,帮助他为即将到来的英国夏令营做准备。相比高成本的美国外教课程,我相信ChatGPT的有趣对话在提升Kevin的英语表达能力的同时,也会让他在轻松的交流中学到关于英国的知识。

2024-05-25 20:40:57 780

原创 大语言模型的Prompt工程、RAG和微调区别及应用示例

大模型应用中,Prompt工程引导模型输出,RAG利用外部知识增强回答的准确性及丰富度,微调则使模型更好地适应特定任务或领域。三者紧密协作,不仅能提高特定场景下模型的表现,更使其能够精准、高效地完成复杂任务。

2024-05-02 21:27:04 3637

原创 使用LM Studio与Anything LLM基于Llama-3高效构建本地知识库系统

另外,也可以选择openai或AnythingLLM,如果选择AnythingLLM,如下图所示,列表了其支持的大语言模型,选择了对应的模型点击“save changes“时,在后台会下载对应的大模型到本地。针对测试人员,可以在构建的大型模型和知识库问答应用中进行快速测试,并跟踪各个环节的结果,如embedding的召回结果是否覆盖所有知识点,可通过接口调用日志进行快速查看。针对业务专家和产品设计人员,即使不懂代码,也能快速构建产品原型,了解基于大型模型知识体系的构建过程,并能选型大语言模型。

2024-04-27 16:14:31 17277 5

原创 Ollama实现开源大模型本地化安装部署

本文讲述如何使用ollama实现开源大模型本地化部署,包括ollama和open-webui的安装、大模型的选择和安装、模型测试,以及优化方法。本地化部署允许用户自定义模型,并通过人工标注数据进行微调和强化学习,以提升模型表现。

2024-04-13 21:02:44 3685

原创 PagerDuty Copilot - 运维领域大模型应用场景

PagerDuty Copilot是pagerduty的一款基于大语言模型的AI智能助手,主要功能包括自动生成事件状态更新、事后分析报告和流程自动化,从而减轻运营团队负担,提高效率,快速问题解决。

2024-04-08 21:48:25 1107 1

原创 深度解析:ChatGPT在不同场景中的应用

翻译大语言模型在翻译方面表现出强大的能力,能够理解并准确翻译各种语言。通过机器学习的方法,它可以在不同的语言之间自由转换,无论是常见的英语、中文,还是较为少见的小语种,都能够进行高质量的翻译。这使得跨语言的交流和理解变得更加便捷。多余的示例也不必整理,在google的翻译、苹果浏览器的翻译上这些功能早就已经存在了,只是chatGPT比其翻译得更好一些,大家可以自己实操一下。另外结合一些插件,还可以完成对在线pdf、word等文档的翻译。注意:翻译的质量非常好,大家可以试试看。

2024-04-08 21:42:58 1317

原创 如何实现相似事件识别:事件表征和Jaccard相似度计算

本文介绍了使用Jaccard算法实现相似事件识别的方法、Jaccard算法原理、应用场景及核心代码实现。在aiops领域,通过该算法实现相似事件识别,帮助运维人员快速定位和解决类似问题,还介绍了如何表征事件以及如何计算Jaccard相似度。

2023-12-18 21:54:55 1583

原创 运维效率提升:基于大模型构建高效的运维知识及智能问答平台

本文介绍了如何通过知识库和智能问答系统提升运维效率及使用场景和解决方案。通过一个实操的案例介绍了利用大模型快速构建这样一个知识库及智能问答平台。

2023-11-19 10:20:30 2895

原创 如何在事件及应急场景下低成本且高效地构建排障拓扑,加速排障过程?

本文介绍了如何在事件及应急场景下低成本且高效地构建排障拓扑,加速排障过程。

2023-11-06 17:16:15 197

原创 统一事件管理 - 完整指南

本文介绍了事件管理的最佳实践和流程。在事件管理的过程中,需要检测事件、记录事件、分类事件、诊断事件、解决事件、关闭事件和事后复盘。通过本文,读者可以了解如何进行事件或应急响应,及如何按照最佳实践的过程执行各种活动,以满足客户的服务需求。

2023-08-11 09:22:55 271

原创 人工智能代码生成能力提速:对科技行业的未来意味着什么

本文通过作者的切身体验介绍人工智能的代码生成能力,以及对科技行业未来的影响。 包括人工智能将如何影响研发过程、各种角色所需的技能以及客户的期望。

2023-07-16 11:06:47 244

原创 Moogsoft - 根因分析实现逻辑

MOOGSOFT根因分析实现逻辑介绍

2023-06-07 22:06:29 441

原创 GOOGLE SRE 运维模式解读

Google SRE文化的精髓在于将软件开发和运维相结合,实现了自动化运维,从而提高了服务的可靠性和可维护性。SRE团队通过对生产环境的监控和分析,不断改进服务的性能和稳定性。此外,SRE团队还积极参与软件开发和架构设计,为产品的可靠性和可扩展性提供支持。

2023-05-27 19:24:10 642 1

原创 如何用Prometheus预测指标未来趋势并告警

最近一直在研究Prometheus的整个生态系统,无论是从系统设计思想还是使用上,都发现了许多有趣的能力。在这里,我们将不再讨论如何采集和加工指标,并通过Alert Rule生成告警。在看到的几个国外用户案例中,将该方法用于 Alert Rule 预测某个指标在未来一段时间是否达到其额定规划并产生告警是非常普遍的应用。它可以基于历史数据来预测未来的值,并支持设置预测范围和置信度等参数。请注意,您需要根据实际情况修改指标名称、时间范围和阈值等参数,以及告警的级别、摘要和描述等信息。,以提高预测的置信度。

2023-05-26 14:21:25 2182 1

原创 Markdown常用方法介绍

Markdown 是一种简单易读、易写的标记语言,而且具有高级功能,例如内联图像和链接等。Markdown 可以用于编写文档、博客、Readme 文件等,因为它的格式简单明了,易于编写和阅读。本文介绍了 Markdown 的常用标记和示例,以及如何在 Markdown 中展示图像、进行换行等。

2023-04-22 07:57:04 685

原创 Pandas 数据操作技巧总结

本篇文章介绍了在使用Pandas数据处理库时的一些常见问题的解决方法。文章涵盖了如何在DataFrame中查找、替换、排序数据,以及如何对某一列进行计数。其中,对于每个问题,文章都提供了具体的代码示例,并解释了代码的含义和使用方法。本篇文章适用于Pandas初学者或有一定经验的用户,涵盖了许多常见问题的解决方案,希望能够对读者在数据处理中有所帮助。

2023-04-10 20:47:50 2354 1

原创 如何在 Jupyter 中控制数据字段全部显示

当我们在 Jupyter Notebook 中查看数据时,有时可能会遇到仅显示部分数据的情况,例如使用省略号(...)表示数据字段。这是因为 Jupyter Notebook 会自动将数据字段的长度限制在一定范围内。本文将介绍如何控制在 Jupyter 中数据字段全部进行显示,而不是显示省略号。

2023-04-10 20:42:12 4059 1

原创 如何用pandas和Pygwalker进行数据探索性分析

数据探索性分析是数据分析的重要步骤之一。其目标在于通过对数据进行可视化和摘要统计,更好地理解数据的性质和结构,探索数据中潜在的模式和关系,并为后续的数据建模和分析提供支持。在数据探索性分析的过程中,我们可以通过直方图、散点图、箱线图等可视化图表,以及均值、中位数、标准差等统计指标,对数据的特征、分布、离散情况等进行探索和解释。这些分析结果可以帮助我们更好地理解数据,为后续的数据建模和分析提供支持。数据探索性分析的作用不仅仅局限于数据建模和分析。

2023-04-10 20:39:26 1449 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除