Google Object Detection API 安装教程
安装Python和TensorFlow
- 安装python,建议采用Miniconda或者Anaconda,可以很方便管理包和环境;
- 安装TensorFlow最新发行版,可以参考相关文档;
- 安装pillow, jupyter, matplotlib, lxml等依赖项,通过pip或者conda完成安装;
- 安装Protoc,可以参考这里和这里;
- (可选)安装git。
windows下安装
获取代码
假设你已经安装好Python和TensorFlow。这里是Google Object Detection API的项目地址。
可以直接下载zip文件,然后解压。
或者已经安装git,打开命令行,使用如下命令获取代码:
git clone https://github.com/tensorflow/models.git
假设models位于X:\xx
目录下。
编译Protobuf文件
打开命令终端,进入models代码根目录,然后
# X:\xx\models
cd research
protoc object_detection/protos/*.proto --python_out=.
这里建议使用类似unix终端的工具,例如Git Bash、Cygwin等,使用CMD或者PowerShell可能会导致如下错误
object_detection/protos/*.proto: No such file or directory
创建object_detection
包
打开Anaconda Prompt,进入models/research
,执行如下命令,将会把object_detection
包所包含的代码文件全部打包:
# X:\xx\models\research
python setup.py build
在build/lib
下就能看到object_detection
包。
创建slim
包
执行如下命令,将会把slim
包所包含的代码文件全部打包:
# X:\xx\models\research
cd slim
python setup.py build
在build/lib
下就能看到slim
包。
添加环境变量
在环境变量中新建变量:PYTHONPATH,内容应为上述创建的两个包的根目录,形式如下:
X:\xx\models\research\build\lib;X:\xx\models\research\slim\build\lib
测试安装
打开新的Anaconda Prompt,进入object_detection
目录:
# X:\xx\models\research\object_detection
python builders\model_builder_test.py
如输出下面结果表明安装成功。
Ran 11 tests in xx.xxx s
OK
Ubuntu下安装
获取代码
打开命令行,使用如下命令获取代码:
git clone https://github.com/tensorflow/models.git
假设models位于/xx/xx
目录下。
编译Protobuf文件
打开命令终端,进入models代码根目录,然后
# /xx/xx/models
cd research
protoc object_detection/protos/*.proto --python_out=.
创建object_detection
包
执行如下命令,将会把object_detection
包所包含的代码文件全部打包:
# /xx/xx/models
cd reseach
python setup.py build
在build/lib
下就能看到object_detection
包。
创建slim
包
执行如下命令,将会把slim
包所包含的代码文件全部打包:
# /xx/xx/models/research
cd slim
python setup.py build
在build/lib
下就能看到slim
包。
添加环境变量
修改~/.bashrc
文件,将上述的两个包添加进python的搜索路径。
vim ~/.bashrc
在打开的vim编辑内容的最后添加:
export PYTHONPATH=/xx/xx/models/research/build/lib:/xx/xx/models/research/slim/build/lib:${PYTHONPATH}
保存退出。然后执行下面的命令使环境变量生效:
source ~/.bashrc
测试安装
打开新的终端,进入object_detection
目录:
# /xx/xx/models/research/object_detection
python builders/model_builder_test.py
如输出下面结果表明安装成功。
Ran 11 tests in xx.xxx s
OK