安装Google Object Detection API

Google Object Detection API 安装教程

安装Python和TensorFlow

  1. 安装python,建议采用Miniconda或者Anaconda,可以很方便管理包和环境;
  2. 安装TensorFlow最新发行版,可以参考相关文档
  3. 安装pillow, jupyter, matplotlib, lxml等依赖项,通过pip或者conda完成安装;
  4. 安装Protoc,可以参考这里这里
  5. (可选)安装git。

windows下安装

获取代码

假设你已经安装好Python和TensorFlow。这里是Google Object Detection API的项目地址

可以直接下载zip文件,然后解压。
或者已经安装git,打开命令行,使用如下命令获取代码:

git clone https://github.com/tensorflow/models.git

假设models位于X:\xx目录下。

编译Protobuf文件

打开命令终端,进入models代码根目录,然后

# X:\xx\models
cd research
protoc object_detection/protos/*.proto --python_out=.

这里建议使用类似unix终端的工具,例如Git Bash、Cygwin等,使用CMD或者PowerShell可能会导致如下错误

object_detection/protos/*.proto: No such file or directory

创建object_detection

打开Anaconda Prompt,进入models/research,执行如下命令,将会把object_detection包所包含的代码文件全部打包:

# X:\xx\models\research
python setup.py build

build/lib下就能看到object_detection包。

创建slim

执行如下命令,将会把slim包所包含的代码文件全部打包:

# X:\xx\models\research
cd slim
python setup.py build

build/lib下就能看到slim包。

添加环境变量

在环境变量中新建变量:PYTHONPATH,内容应为上述创建的两个包的根目录,形式如下:

X:\xx\models\research\build\lib;X:\xx\models\research\slim\build\lib

测试安装

打开新的Anaconda Prompt,进入object_detection目录:

# X:\xx\models\research\object_detection
python builders\model_builder_test.py

如输出下面结果表明安装成功。

Ran 11 tests in xx.xxx s

OK

Ubuntu下安装

获取代码

打开命令行,使用如下命令获取代码:

git clone https://github.com/tensorflow/models.git

假设models位于/xx/xx目录下。

编译Protobuf文件

打开命令终端,进入models代码根目录,然后

# /xx/xx/models
cd research
protoc object_detection/protos/*.proto --python_out=.

创建object_detection

执行如下命令,将会把object_detection包所包含的代码文件全部打包:

# /xx/xx/models
cd reseach
python setup.py build

build/lib下就能看到object_detection包。

创建slim

执行如下命令,将会把slim包所包含的代码文件全部打包:

# /xx/xx/models/research
cd slim
python setup.py build

build/lib下就能看到slim包。

添加环境变量

修改~/.bashrc文件,将上述的两个包添加进python的搜索路径。

vim ~/.bashrc

在打开的vim编辑内容的最后添加:

export PYTHONPATH=/xx/xx/models/research/build/lib:/xx/xx/models/research/slim/build/lib:${PYTHONPATH}

保存退出。然后执行下面的命令使环境变量生效:

source ~/.bashrc

测试安装

打开新的终端,进入object_detection目录:

# /xx/xx/models/research/object_detection
python builders/model_builder_test.py

如输出下面结果表明安装成功。

Ran 11 tests in xx.xxx s

OK
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值