2017 第八届蓝桥杯 魔方状态

标题:魔方状态

二阶魔方就是只有2层的魔方,只由8个小块组成。如图p1.png所示。

小明很淘气,他只喜欢3种颜色,所有把家里的二阶魔方重新涂了颜色,如下:

前面:橙色

右面:绿色

上面:黄色

左面:绿色

下面:橙色

后面:黄色

请你计算一下,这样的魔方被打乱后,一共有多少种不同的状态。

如果两个状态经过魔方的整体旋转后,各个面的颜色都一致,则认为是同一状态。

请提交表示状态数的整数,不要填写任何多余内容或说明文字。


开始拿到这道题没什么思路,笔算算不来,模拟判重感觉太麻烦。大神说burnside引理可以做,学渣表示看不懂。。网上基本没有求解的,有的也答案不一。最后还是模拟判重这么写了。

我的答案:229878

测试:全同色魔方状态为1,正确。正常二阶魔方状态3674160,正确。

思路:其实就是空间状态搜索。模拟操作+判重。关于操作,二阶魔方只做U(顶层顺时针) R(右层顺时针) F(前层顺时针)就可以得到所有状态了。判重需要旋转整个魔方去比较。(判重小白现在只会用set)。

然后是,怎么去表示一个二阶魔方。二阶魔方8个块,一个块6面(看不见的作黑色考虑),所以我用了char st[8][7]去表示一个魔方。块的顺序如下:


上面的初始状态表示就是{{"oybbgb"},{"oygbbb"},{"bygbby"},{"bybbgy"},{"obbogb"},{"obgobb"},{"bbgoby"},{"bbbogy"}}

o表示橙色,b表示黑色,g表示绿色,y表示黄色。

对于一个小块,6个面的颜色定义顺序如下:


所以,比如说,上面题目给的魔方,前面一层,左上角的橙黄绿块,表示就是oybbgb


代码(有些丑陋见谅_(:з」∠)_ )

#include <bits/stdc++.h>
using namespace std;
typedef char st[8][7];
st state[2000000];
set<string> all;
st begin={{"oybbgb"},{"oygbbb"},{"bygbby"},{"bybbgy"},{"obbogb"},{"obgobb"},{"bbgoby"},{"bbbogy"}}; 
//st begin={{"oooooo"},{"oooooo"},{"oooooo"},{"oooooo"},{"oooooo"},{"oooooo"},{"oooooo"},{"oooooo"}};
//只有一个颜色的魔方 ans=1 
//st begin={{"rykkbk"},{"rygkkk"},{"kygkko"},{"kykkbo"},{"rkkwbk"},{"rkgwkk"},{"kkgwko"},{"kkkwbo"}};
//正常2阶魔方状态  r红 y黄 b蓝 g绿 w白 o橙  k黑(红对橙,白对黄,蓝对绿,颜色相近的相对)这里白为底 前为红
//需要将state大小改为4000000
//这个测试用例跑了20分钟左右 560M内存  ans=3674160 与实际二阶魔方状态数相同 见下截图 
int front, tail;
void ucell(char *a){swap(a[0], a[2]); swap(a[2], a[5]); swap(a[5], a[4]);}
void rcell(char *a){swap(a[1], a[0]); swap(a[0], a[3]); swap(a[3], a[5]);}
void fcell(char *a){swap(a[2], a[1]); swap(a[1], a[4]); swap(a[4], a[3]);}
void u(st &s)//顶层顺时针旋转 
{
	ucell(s[0]);
	ucell(s[1]);
	ucell(s[2]);
	ucell(s[3]);
	swap(s[1], s[0]);
	swap(s[2], s[1]);
	swap(s[3], s[2]);
}
void uwhole(st &s)//整个魔方从顶部看 顺时针转 用于判重 
{
	u(s);
	ucell(s[4]);
	ucell(s[5]);
	ucell(s[6]);
	ucell(s[7]);
	swap(s[5], s[4]);
	swap(s[6], s[5]);
	swap(s[7], s[6]);
}
void f(st &s)//前面一层 顺时针转 
{
	fcell(s[0]);
	fcell(s[1]);
	fcell(s[4]);
	fcell(s[5]);
	swap(s[1], s[5]);
	swap(s[0], s[1]);
	swap(s[4], s[0]);
}
void fwhole(st &s)//整个魔方从前面看 顺时针转 用于判重 
{
	f(s);
	fcell(s[2]);
	fcell(s[6]);
	fcell(s[7]);
	fcell(s[3]);
	swap(s[2], s[6]);
	swap(s[3], s[2]);
	swap(s[7], s[3]);
}
void r(st &s)//魔方右层顺时针转 
{
	rcell(s[1]);
	rcell(s[2]);
	rcell(s[6]);
	rcell(s[5]);
	swap(s[2], s[1]);
	swap(s[5], s[1]);
	swap(s[6], s[5]);
}
void rwhole(st &s)//整个魔方从右边看 顺时针转 用于判重 
{
	r(s);
	rcell(s[0]);
	rcell(s[3]);
	rcell(s[4]);
	rcell(s[7]);
	swap(s[3], s[7]);
	swap(s[0], s[3]);
	swap(s[4], s[0]);
}
string convert(st &s)//魔方状态二维字符数组 转化为string 
{
	string ss;
	for(int i=0; i<8; i++)ss+=s[i];
	return ss;
}
bool try_to_insert(int tail)//判重 
{
	st k;
	memcpy((void*)k, (void*)state[tail], sizeof(state[tail]));
	for(int i=0; i<4; i++)
	{
		fwhole(k);
		for(int j=0; j<4; j++)
		{
			uwhole(k);
			for(int q=0; q<4; q++)
			{
				rwhole(k);
				if(all.count(convert(k))==1)
				{
					return false;
				}
			}
		}
	}
	all.insert(convert(k));
	return true;
}
int main()
{
	front=0,tail=1;
	all.insert(convert(begin));
	memcpy((void*)state[0],(void*)begin,sizeof(begin));
	while(front!=tail)
	{
		//对当前状态分别模拟三种操作U R F 然后判重 
		for(int i=0; i<3; i++)
		{
			memcpy((void*)state[tail], (void*)state[front], sizeof(state[front]));
			if(i==0)
			{
				u(state[tail]);
				if(try_to_insert(tail))tail++;
			}
			else if(i==1)
			{
				r(state[tail]);
				if(try_to_insert(tail))tail++;
			}
			else if(i==2)
			{
				f(state[tail]);
				if(try_to_insert(tail))tail++;
			}
		}
		front++;
	}
	cout<<front<<endl;
	return 0;
}
//ans 229878


### 第六届蓝桥杯C语言B组省赛试题及解析 #### 一、题目概述 第六届蓝桥杯C语言B组省赛涵盖了多个编程挑战,涉及算法设计、数据结构应用等方面的知识。比赛旨在考察参赛者的逻辑思维能力和编程技巧。 #### 二、具体题目分析 ##### 题目1:方阵填数 给定一个n×n的矩阵,按照特定规律填充数字并输出该矩阵。此题主要测试考生对二维数组的操作能力以及循环控制语句的应用[^4]。 ```c #include <stdio.h> int main() { int n; scanf("%d", &n); int matrix[n][n]; // 填充矩阵逻辑 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { printf("%d ", matrix[i][j]); } printf("\n"); } return 0; } ``` ##### 题目2:格子中输出 本题要求根据输入字符串`buf`和宽度参数`width`,在指定区域内居中显示文字,并通过格式化输出实现。这里的关键在于理解`printf()`函数中的格式说明符及其作用方式。 ```c #include <stdio.h> #include <string.h> int main() { char buf[] = "example"; int width = 20; printf("%*s%s%*s", (width - 2 - strlen(buf)) / 2, " ", buf, (width - 1 - strlen(buf)) / 2, " "); return 0; } ``` ##### 题目3:三部曲之分解质因数 对于任意正整数N,求其所有不同的质因子乘积形式表示法的数量。这类问题通常涉及到数学概念的理解与运用,特别是关于素数筛选的方法[^1]。 ##### 题目4:特别数的和 定义某种特殊性质的自然数序列S={a_1,a_2,...,a_n},其中每个元素满足一定条件。计算集合内所有符合条件成员总和。此类题目往往需要巧妙利用位运算优化性能。 ##### 题目5:九宫幻方 构建一个由连续奇数构成且各行各列斜线上的数值相加等于固定常量K的3x3阶魔方阵。这是经典的组合数学难题之一,在实际解答过程中可能需要用到回溯法或其他高级搜索策略。 ##### 题目6:牌型种数 假设一副扑克牌共有m张不同花色的牌面,从中随机抽取若干张组成一手完整的手牌,则存在多少种可能性?这是一道典型的排列组合类问题,解决它不仅考验选手的基础理论功底也检验着大家灵活处理复杂场景的能力。 ##### 题目7:剪邮票 给出一张矩形纸片上印有的连通区域图案,问能否沿着边界裁切成多份独立的小块而不破坏任何图形连接关系。这是一个几何拓扑学领域内的趣味小品,解决方案可以采用图论模型来描述物体间的邻接特性。 ##### 题目8:买不到的数目 已知某商店售卖商品单价分别为A元和B元两种规格,顾客仅能购买这两种价格的商品组合成总价X元,请找出无法凑齐的最大金额Y。这个问题可以通过动态规划的思想来进行有效破解。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值