CamStyle:Camera Style Adaptation for Person Re-identification阅读笔记

Camera Style Adaptation for Person Re-identification

作者: 种准,郑良,郑哲东,杨易等 2018CVPR
代码:https://github.com/zhunzhong07/CamStyle
和ZL老师团队2018年另一篇CVPR很相似:Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification,可参考我的:这篇博客

1. Motivation

不同相机不一样导致风格差异,需要学习相机不变性特征–>直接将相机迁移到其他相机下,让网络见到更多风格的照片就OK了,同时还能改善过拟合–>普通版本;加上LSR正则就是改进版本。思想很简单,但效果很显著。
在这里插入图片描述

2. 介绍

普通版本在相机少的情况下由于缓和了过拟合现象因此作用很大,但相机较多时由于图像也多了导致过拟合没那么严重,而生成图像中的噪声点(如图2)开始捣乱了,性能开始不太行,需要用改进版本做。
在这里插入图片描述
CamStyle的优点

  • 平滑相机风格差异并减少过拟合
  • 学习相机不变性信息
  • 由无监督的CycleGAN实现,很符合实际

贡献

  • 普通版本在少相机系统中性能提升很大
  • 改进版本在全相机系统中性能进一步提升

3. 方法

3.1. CycleGAN回顾

关于CycleGAN的详细内容可以参考我的这篇博客

G:A->B 和 F:B->A 的双向图像生成 + 循环一致性损失进行生成图像约束
其中AB中图像分别记为x和y,分别M和N张,即:
在这里插入图片描述

3.2. Camera-aware Image-Image Translation

在这里插入图片描述
在这里插入图片描述

解释:

F(x):x对于F而言是目标域真实图像,而F是为了进行风格迁移的,而x本身就是需要的风格,故F不再在风格而起作用,但为了保证
在这里插入图片描述
最小化,F就只能强迫让F(x)和x的其他信息一致,主要体现在让两者的内容信息,如id相关信息一致,从而维持了id不变。
G(y)同理。

网络结构和CycleGAN一样(本身就是一样的做法,只不过加了一个损失监督而已,和后面的reid是分段进行的,就是将CycleGAN搬到reid中并结合实际加了一个损失来生成图像,用生成结果做reid),输入为256256,生成器由9个残差块+4个卷积(2个步长2的+2个步长1/2的),鉴别器用7070的PatchGAN。将每一张图像迁移到其他L-1个相机下,得到L倍的图像(L是相机数,生成的L-1倍图像不全部要,后面会提)。
在这里插入图片描述
三点观察

  • 真图像(圆点)和假(生成,三角)图像分布一致(生成图像分布与真实图像分布一致)
  • 生成图像的id得以保存(某一类的三角和圆点大致在一起)
  • 存在噪声点(红色框内)

3.3. ReID的baseline

IDE网络,ResNet50,去掉FC-1000改成FC-1024和FC-#Classes,reid的输入size为256*128

3.4. 训练CamStyle

两个版本

  • 保持了ID,那就信任它,生成图像打one-hot标签—>普通版本
  • 不能太信任生成图像,打软标签—>改进版本

共同定义
每个mini-batch包含M张真实图像和N张生成图像,损失为:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3. 参数分析

在这里插入图片描述
M/N>1会导致生成(假)图像太大,假的太大必然会出问题,会让网络倾向于学习假图像的信息(假图像丢失了必然部分信息);最终选择M:N=3:1比较合适。

4.4.评估

  • 使用相机个数(数据量)对模型性能的影响

在这里插入图片描述均是越多越好,因为一方面可靠性数据越来越多,另一方面由于GT多了,找rank1(评估的就是rank1)也就容易些

** 普通版本:Fig7 + Tab 1
在这里插入图片描述
还是那句:少相机系统中比较有用,多相机系统中由于过拟合缓解而噪声副作用导致涨点不明显
** 全版本:Fig7 + Tab 1
性能进一步提升

  • 不同相机的影响
    在这里插入图片描述
    相机1和相机2提点很明显,其余涨点不明显
  • CamStyle和普通数据增强是互补的—>不是重复累赘的
    在这里插入图片描述

4.5. 和SOTA比较

在这里插入图片描述
在这里插入图片描述

5. 总结

  • CycleGAN + ID不变性损失生成图像,作为数据扩增和学习相机不变性约束
  • 普通版本和加了LSR的版本(缓和噪声点)
  • 生成图像不能全部用,假的太多了不好

相关链接:

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值