K-means算法

K-means算法是一种常见的聚类方法,其目标函数旨在最小化簇内点的平方和。算法步骤包括初始化质心,计算点到质心的距离并重新分配类别,更新质心。它具有线性时间复杂度,但对初始点和K值选择敏感,可能导致局部最优。K-means的收敛性和不同初始化结果的影响、K值选择方法、距离度量以及解决缺陷的策略都是需要考虑的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means:

k-means的目标函数:j=min\sum_{i=1}^{n} \sum_{K=1}^{K} r_{iK}(x_{i}-\mu_{K} )

其中,n表示数据集中点的总数目,K表示所需聚类的数据,\mu _{K}表示第K个中心点的位置,对于r_{iK},当x_{i}属于第K个类时,r_{iK}=1,否则

这是一个使用 Python argparse 模块创建命令行接口的案例。在这个案例中,我们首先需要导入 argparse 模块,然后创建一个 ArgumentParser 对象,用于处理命令行参数。 接下来,我们可以通过 add_argument() 方法向 ArgumentParser 对象添加不同的参数。这些参数可以是位置参数(positional arguments)或选项参数(optional arguments),并可以设置不同的属性,例如名称、类型、默认值等。 最后,我们可以使用 parse_args() 方法解析命令行参数,并将结果存储在一个 Namespace 对象中,从而可以在程序中轻松访问这些参数。 下面是一个简单的示例程序,演示了如何使用 argparse 模块创建一个命令行接口: ```python import argparse # 创建 ArgumentParser 对象 parser = argparse.ArgumentParser(description='Process some integers.') # 添加位置参数 parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer for the accumulator') # 添加选项参数 parser.add_argument('--sum', dest='accumulate', action='store_const', const=sum, default=max, help='sum the integers (default: find the max)') # 解析命令行参数 cmd_args = parser.parse_args() # 打印结果 print(cmd_args.accumulate(cmd_args.integers)) ``` 在这个示例中,我们添加了一个位置参数 integers 和一个选项参数 sum。integers 参数需要传入至少一个整数,而 sum 参数用于指定对这些整数进行求和(默认找到最大值)。 然后,我们使用 parse_args() 方法解析命令行参数,并将结果存储在 cmd_args 对象中。最后,我们调用 accumulate() 方法对整数进行求和或找到最大值,并打印结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值