基于Tensorflow框架的tfrecord文件的生成与读取
一. 根据自己已有数据集,生成tfrecord文件,附有详细的注释:
我所用的数据集只有猫狗两类,下面是部分示例图:

#coding=utf-8
import cv2
import os
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
def writeTFRecord(imgDir, recordPath, imgH, imgW, encoderLabel, recordName):
'''
创建tfrecord文件
param:
imgDir: 预处理图片路径
recordPath: 预保存tfrecord文件路径
imgH: 为了方便训练,将原图resize为指定的高
imgW: 指定的宽
encoderLabel: 编码标签,将标签以数字的形式呈现
recordName: 预保存tfrecord文件名,eg:test.tfrecord
'''
imgPathList = [os.path.join(imgDir, img) for img in os.listdir(imgDir)] #将所有图片路径绝对路径放入list中
np.random.shuffle(imgPathList) #打乱imgList中的图片顺序
if

本文详细介绍了如何使用Tensorflow框架生成和读取tfrecord文件,提供了带注释的示例代码,适用于猫狗分类数据集。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



