1、快速排序
快速排序是对冒泡排序算法的一种改进,同冒泡排序一样,快速排序也属于交换排序,通过元素之间的比较和交换位置来达到排序的目的。不同的是,冒泡排序在每一轮只把一个元素冒泡到数列的一端,而快速排序在每一轮挑选一个基准元素,并让其他比它大的元素移动到数列一边,比它小的元素移动到数列的另一边,从而把数列拆解成了两个部分,这种思路就叫做分治法。
2、排序的作用
排序算法是为了让无序的数据组合变成有序的数据组合。
有序的数据组合最大的优势是在于当你进行数据定位和采用时,
会非常方便,因为这个数据是有序的
从而在代码设计的时候会让你避免很多不必要的麻烦,
因为无序数据你在进行推断数据前后关系的时候会显示很繁琐
快速排序是排序中的一种,它在最差情况下和别的排序相差不大
而在最优,一般情况下,会比一般的排序方法更节省时间
这里的一般排序是指:起泡,希尔,插入等常规排序方法
如果你机器上随机生成上千万个数字、用各种方法进行排序,然后你就知道这个东西的优点了
3、特点
- 稳定性:快排是一种不稳定排序,比如基准值的前后都存在与基准值相同的元素,那么相同值就会被放在一边,这样就打乱了之前的相对顺序
- 比较性:因为排序时元素之间需要比较,所以是比较排序
- 时间复杂度:快排的时间复杂度为O(nlogn)
- 空间复杂度:排序时需要另外申请空间,并且随着数列规模增大而增大,其复杂度为:O(nlogn)
- 归并排序与快排 :归并排序与快排两种排序思想都是分而治之,但是它们分解和合并的策略不一样:归并是从中间直接将数列分成两个,而快排是比较后将小的放左边大的放右边,所以在合并的时候归并排序还是需要将两个数列重新再次排序,而快排则是直接合并不再需要排序,所以快排比归并排序更高效一些,可以从示意图中比较二者之间的区别。
- 快速排序有一个缺点就是对于小规模的数据集性能不是很好。
4、快速排序原理
快速排序是基于“分治法”原理实现,所谓分治法就是不断的将原数组序列按照一定规律进行拆分,拆分后各自实现排序直到拆分到序列只剩下一个关键字为止。快速排序首先选取一个关键字为标志位(关键字的选取影响排序效率),然后将序列中小于标志位的关键字移动至标志位左侧,大于标志位的关键字移动至右侧。一趟比较完成后,整个序列以选取的标志位为界,左侧均小于标志位,右侧均大于关键字。但左右两侧内部并不是有序的(左右两侧关键字个数也不一定相同)。进而继续将左右两侧分别再以这种方式进行排序,直到将序列拆分的剩余一个关键字为止,整个序列即变成有序。
1、首先,随机生成十个数字。
Random rd = new Random();
int[] num = new int[10];
for (int i = 0; i < num.length; i++) {
num[i] = rd.nextInt(100)+1;
}
System.out.println(Arrays.toString(num));
所得如下:
我们便以这十个数字进行对快速排序思想的说明。
我们需要选定基准数,这里,我们选择第一个数字为基准数,即15。
我们用L存储第一个元素的下标,用R存储最后一个元素的下标,如图所示:
我们从R开始往前找,找第一个小于val的数字,放到L的位置,L++。
我们发现,8小于val,则变动如下图所示:
然后我们从L开始往后找,找到第一个大于val的数字,放到R的位置,R- -。
我们发现,46大于val,则变动如下图所示:
2、之后循环这两步,直到L与R相等,我们将基准数放在他们为下标的位置
即如下图所示:
这样,我们就将小于基准数的数字全部放在了基准数的左边,大于基准数的全部放在了基准数的右边。
我们将基准数的左边的数字和基准数右边的数字分别进行上述所有步骤如下图,直至一个分支只有一个元素。
3、后面的步骤就是前面步骤的重复,我就不一一描述
直接给出最后的图如下:
4、排序结果为:8 15 36 46 51 55 82 86 89 96
快排代码如下所示,仅供参考:
public class testSort {
public static void main(String[] args) {
Random rd = new Random();
int[] num = new int[10];
for (int i = 0; i < num.length; i++) {
num[i] = rd.nextInt(100)+1;
}
System.out.println(Arrays.toString(num));
quickSort(num,0,num.length-1);
System.out.println(Arrays.toString(num));
}
/**
* 实现快速排序
* @param num
* @param i
* @param j
*/
public static void quickSort(int[] num,int i,int j){
if(i >= j){//只剩一个元素不用处理直接结束。
return;
}
//选取基准数
int val =num[i];
int l = i;
int r = j;
while(l < r){//当l == r时,就是调整完成时
//从后往前找第一个小于val的数字
while (l < r && num[r] > val){
r --;
}
if(l < r){//找到了数字
num[l++] = num[r];
}
//从前往后找第一个大于val的数字
while (l < r && num[l] < val){
l ++;
}
if(l < r){//找到了数字
num[r--] = num[l];
}
}
//l==r,基准数放进去
num[l] = val;
quickSort(num,i,l-1);
quickSort(num,l+1,j);
}
}