2019.7.22

Adaptive Noise Immune Cluster Ensemble Using Affifinity Propagation

使用近邻传播的免疫噪声的适应性聚类集成

       首先,AP能够获取属性之间的关系,找到一组有代表性的属性,并删除噪声属性。具体来说,AP2CE将AP应用于降低噪声样本的影响,并将数据集划分成几个簇。其次,AP2CE采用Ncut来规范在不同运行中的AP得到的聚类解决方案,并获得最终结果。代替使用Ncut作为一致性函数,我们采用了AP作为一致性函数,并且提出了基于三重近邻传播的聚类集成框架AP3CE。自适应AP2CE进一步被设计成用于提高AP2CE的性能,这采用了新提出的优化流程来搜索最佳的AP2CE

       这项工作的贡献是:①提出了一种新的免疫噪声的聚类集成框架作为基于双重近邻传播的聚类集成框架AP2CE来对噪声数据集进行聚类;②我们采用了多距离函数代替单距离函数,这有利于提高集成的多样性,并避免了与距离函数相关的噪声;③我们应用AP对属性进行分组,删除了噪声属性并选择了代表属性;④我们在AP2CE中使用了优先测量来控制簇的数量,而不是直接指定数字;⑤为了搜索最优的AP2CE,新设计了一个自适应过程。

 

先验概率:先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。在贝叶斯统计推断中,不确定数量的先验概率分布是在考虑一些因素之前表达对这一数量的置信程度的概率分布。例如,先验概率分布可能代表在将来的选举中投票给特定政治家的选民相对比例的概率分布。未知的数量可以是模型的参数或者是潜在变量。

后验概率:后验概率是信息理论的基本概念之一。在一个通信系统中,在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。后验概率的计算要以先验概率为基础。后验概率可以根据通过贝叶斯公式,用先验概率和似然函数计算出来。后验概率是指在得到“结果”的信息后重新修正的概率,是“执果寻因”问题中的"果"。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。事情还没有发生,要求这件事情发生的可能性的大小,是先验概率。事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率。

极大似然估计:极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的另一种方法。已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

发布了3 篇原创文章 · 获赞 0 · 访问量 189

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览