2019.7.31

准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F值(F-Measure):

 TP-将正类预测为正类

 FN-将正类预测为负类

 FP-将负类预测位正类

 TN-将负类预测位负类

准确率(正确率)=所有预测正确的样本/总的样本  (TP+TN)/总

精确率=  将正类预测为正类 / 所有预测为正类 TP/(TP+FP)

召回率 = 将正类预测为正类 / 所有正真的正类 TP/(TP+FN)

F值 = 精确率 * 召回率 * 2 / (精确率 + 召回率) (F 值即为精确率和召回率的调和平均值

精确率和召回率在文献检索中的关系:

       “精确率”与“召回率”虽然没有必然的关系(从上面公式中可以看到),然而在大规模数据集合中,这两个指标却是相互制约的。由于“检索策略”并不完美,希望更多相关的文档被检索到时,放宽“检索策略”时,往往也会伴随出现一些不相关的结果,从而使准确率受到影响。而希望去除检索结果中的不相关文档时,务必要将“检索策略”定的更加严格,这样也会使有一些相关的文档不再能被检索到,从而使召回率受到影响。

       凡是涉及到大规模数据集合的检索和选取,都涉及到“召回率”和“精确率”这两个指标。而由于两个指标相互制约,我们通常也会根据需要为“检索策略”选择一个合适的度,不能太严格也不能太松,寻求在召回率和精确率中间的一个平衡点。这个平衡点由具体需求决定。

发布了3 篇原创文章 · 获赞 0 · 访问量 184

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览