python机器学习Day‘7

本文深入探讨了Python中的广义线性模型,包括普通最小二乘法、岭回归和Lasso回归。重点讲解了这些方法的原理、复杂度、参数设置以及在处理线性回归问题时如何应对多重共线性。通过实例展示了如何利用正则化参数调整模型性能。
摘要由CSDN通过智能技术生成

Lets do it!

1.1. Generalized Linear Models 

1.1.广义线性模型

The following are a set of methods intended for regression in which the target value is expected to be a linear combination of the input variables. In mathematical notion, if \hat{y} is the predicted value.

以下是一组用于线性回归的方法,其中目标值(希望能够符合)与输入变量是线性组合关系。在数学概念中,假设是预测值。

\hat{y}(w, x) = w_0 + w_1 x_1 + ... + w_p x_p

Across the module, we designate the vector w = (w_1,..., w_p) as coef_ and w_0 as intercept_.

在整个模块中,我们指定向量作为系数(对应的权重)coef_ ,以及作为截距intercept_

To perform classification with generalized linear models, see Logistic regression.

使用广义线性模型完成分类,请参阅 Logistic回归

 


1.1.1. Ordinary Least Squares

1.1.1.普通最小二乘法

LinearRegression fits a linear model with coefficients w = (w_1, ..., w_p) to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:

LinearRegression模块用来拟合系数为 的线性模型,来得到数据集中观察样本的残差平方和的最小值,并通过线性近似预测。用数学式子表达:


\underset{w}{min\,} {|| X w - y||_2}^2

../_images/sphx_glr_plot_ols_0011.png

LinearRegression will take in its fit method arrays X, y and will store the coefficients w of the linear model in its coef_member:

LinearRegression模块将采用其fit方法拟合数组Xy并将其线性模型的系数存储在其 coef_成员中:


>>>
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_
array([ 0.5,  0.5])

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms are correlated and the columns of the design matrix 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值