只有在数据连续的情况下,你才可以略微改变合成的数据,而如果数据是离散的,绝对不可以改变合成数据,一点都不可以。
例如,如果你输出了一张图片,其像素值是1.0,那么接下来你可以将这个值改为1.0001。如果你输出了一个单词“penguin”,那么接下来就不能将其改变为“penguin + .001”,因为没有“penguin +.001”这个单词。如果想改的话,你必须将“penguin”变为“ostrich”或其他。因为所有的自然语言处理(NLP)的基础都是离散值,如“单词”、“字母”或者“音节”,没有人真正知道怎样才能在 NLP 中应用 GANs
主要在于文本数据是离散数据,而GAN在应用于离散数据时存在以下几个问题:
GAN的生成器梯度来源于判别器对于正负样本的判别。然而,对于文本生成问题,RNN输出的是一个概率序列,然后取argmax。这会导致生成器Loss不可导。还可以站在另一个角度理解,由于是argmax,所以参数更新一点点并不会改变argmax的结果,这也使得GAN不适合离散数据。
文本数据的离散性质使GAN在NLP中面临挑战,包括生成器损失不可导、无法评估局部影响以及训练易崩溃等问题。
订阅专栏 解锁全文
4656

被折叠的 条评论
为什么被折叠?



