学习笔记---传统机器学习中的 Time Series
课程链接:https://www.youtube.com/watch?v=aX7-E0E143A
引言
为什么需要?
预测颗粒度
时序模式
评价指标
传统时序模型
简单平均
滑动平均
指数平滑
根据权重预测,可设置离你越近的越重要!
线性趋势模型
Holt-Winters季节性回归
以上都是指数平滑预测!!
另外一大类(自回归模型–和指数平滑非常接近)
前面的是线性回归,和权重有关
平稳性
优点 VS 缺点
机器学习
https://www.youtube.com/watch?v=Muvto_9aetI
设定时间轴!!预测T时刻的值,必须要用T时刻之前的值进行训练即可!!
用过去预测未来!
拟合
模型验证
滑动验证
预测
滞后特征:指的是过去12天的预测未来一天的,都属于滞后特征。
模型选择
高斯过程时间复杂度高。。。
一般不用
案例
特征工程:
对类别进行lable encoding
深度学习
why:
RNN
RNN+传统时序
DEEP AR
deep 的自回归模型