学习笔记---传统机器学习中的 Time Series

课程链接:https://www.youtube.com/watch?v=aX7-E0E143A

引言

为什么需要?

在这里插入图片描述

预测颗粒度

在这里插入图片描述
在这里插入图片描述

时序模式

在这里插入图片描述

评价指标

在这里插入图片描述

传统时序模型

简单平均

在这里插入图片描述

滑动平均

在这里插入图片描述

指数平滑

在这里插入图片描述
根据权重预测,可设置离你越近的越重要!

线性趋势模型

在这里插入图片描述

Holt-Winters季节性回归

在这里插入图片描述
在这里插入图片描述
以上都是指数平滑预测!!

另外一大类(自回归模型–和指数平滑非常接近)

在这里插入图片描述
前面的是线性回归,和权重有关
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

平稳性

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

优点 VS 缺点

在这里插入图片描述

机器学习

https://www.youtube.com/watch?v=Muvto_9aetI

在这里插入图片描述
在这里插入图片描述
设定时间轴!!预测T时刻的值,必须要用T时刻之前的值进行训练即可!!
用过去预测未来!
在这里插入图片描述

拟合

在这里插入图片描述

模型验证

在这里插入图片描述

滑动验证

在这里插入图片描述
在这里插入图片描述

预测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

滞后特征:指的是过去12天的预测未来一天的,都属于滞后特征。

模型选择

在这里插入图片描述
高斯过程时间复杂度高。。。
一般不用

案例

在这里插入图片描述
特征工程:
对类别进行lable encoding
在这里插入图片描述
在这里插入图片描述

深度学习

why:

在这里插入图片描述

RNN

在这里插入图片描述

RNN+传统时序

在这里插入图片描述

DEEP AR

deep 的自回归模型
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
】在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值