BERT(doing)

BERT 并不是一种新提出的算法,而是集前人之所能,解决了当时NLP model上存在的部分问题:

  1. 并行计算问题(LSTM 中element值是逐个进行的,所以速度不快,transformer是并行计算的)
  2. 梯度消失/爆炸
  3. 前/后方向耦合

1和2 transform 解决,model不是时序序列结构,但是保留时序结构的优点

  1. transformer如何捕获序列中距离较远的元素之间的关系的呢?
    答:self-attention。在LSTM中每个单词的相关性计算是不公平的,相聚越远的词之间的相关性越低。
    计算两两词之间的相关性

  2. self-attention(双向)、encoder-decoder attention以及decoder attention(单向)之间的区别是什么?
    答:

  3. transformer怎么捕获数据中的先后的顺序的?
    答:positional encoding。人为定义位置向量,标志先后顺序。

BERT = Stacks of Transformer Encoder
一. transformer编码器(理论部分):

$transformer$模型的直觉, 建立直观认识;
$positional \ encoding$, 即位置嵌入(或位置编码);
$self \ attention \ mechanism$, 即自注意力机制与注意力矩阵可视化;
$Layer \ Normalization$和残差连接.
$transformer \ encoder$整体结构.

二. transformer代码解读, 语料数据预处理, BERT的预训练和情感分析的应用:

三. sequence 2 sequence(序列到序列)模型或Name Entity Recognition(命名实体识别)(待定):
此部分根据前面的反馈待定.
0. t r a n s f o r m e r transformer transformer模型的直觉, 建立直观认识;

首先来说一下transformer和LSTM的最大区别, 就是LSTM的训练是迭代的, 是一个接一个字的来, 当前这个字过完LSTM单元, 才可以进下一个字, 而transformer的训练是并行了, 就是所有字是全部同时训练的, 这样就大大加快了计算效率, transformer使用了位置嵌入 ( p o s i t i o n a l   e n c o d i n g ) (positional \ encoding) (positional encoding)来理解语言的顺序, 使用自注意力机制和全连接层来进行计算, 这些后面都会详细讲解.
transformer模型主要分为两大部分, 分别是编码器和解码器, 编码器负责把自然语言序列映射成为隐藏层(下图中第2步用九宫格比喻的部分), 含有自然语言序列的数学表达. 然后解码器把隐藏层再映射为自然语言序列, 从而使我们可以解决各种问题, 如情感分类, 命名实体识别, 语义关系抽取, 摘要生成, 机器翻译等等, 下面我们简单说一下下图的每一步都做了什么:

输入自然语言序列到编码器: Why do we work?(为什么要工作);
编码器输出的隐藏层, 再输入到解码器;
输入$<start>$(起始)符号到解码器;
得到第一个字"为";
将得到的第一个字"为"落下来再输入到解码器;
得到第二个字"什";
将得到的第二字再落下来, 直到解码器输出$<end>$(终止符), 即序列生成完成.

我们这节课的内容限于编码器部分, 即把自然语言序列映射为隐藏层的数学表达的过程, 因为理解了编码器中的结构, 理解解码器就非常简单了,最重要的是BERT预训练模型只用到了编码器的部分, 也就是先用编码器训练一个语言模型, 然后再把它适配给其他五花八门的任务.
如果你不知道语言模型是什么, 没关系, 这丝毫不影响本节课内容的理解, 下次我们讲BERT的时候会讲.
而且我们用编码器就能够完成一些自然语言处理中比较主流的任务, 如情感分类, 语义关系分析, 命名实体识别等, 解码器的内容和序列到序列模型有机会我们会涉及到.
Transformer Block结构图, 注意: 为方便查看, 下面的内容分别对应着上图第1, 2, 3, 4个方框的序号:

  1. p o s i t i o n a l   e n c o d i n g positional \ encoding positional encoding, 即位置嵌入(或位置编码);

由于transformer模型没有循环神经网络的迭代操作, 所以我们必须提供每个字的位置信息给transformer, 才能识别出语言中的顺序关系.
现在定义一个位置嵌入的概念, 也就是 p o s i t i o n a l   e n c o d i n g positional \ encoding positional encoding, 位置嵌入的维度为 [ m a x   s e q u e n c e   l e n g t h ,   e m b e d d i n g   d i m e n s i o n ] [max \ sequence \ length, \ embedding \ dimension] [max sequence length, embedding dimension], 嵌入的维度同词向量的维度, m a x   s e q u e n c e   l e n g t h max \ sequence \ length max sequence length属于超参数, 指的是限定的最大单个句长.
注意, 我们一般以字为单位训练transformer模型, 也就是说我们不用分词了, 首先我们要初始化字向量为 [ v o c a b   s i z e ,   e m b e d d i n g   d i m e n s i o n ] [vocab \ size, \ embedding \ dimension] [vocab size, embedding dimension], v o c a b   s i z e vocab \ size vocab size为总共的字库数量, e m b e d d i n g   d i m e n s i o n embedding \ dimension embedding dimension为字向量的维度, 也是每个字的数学表达.
在这里论文中使用了 s i n e sine sine c o s i n e cosine cosine函数的线性变换来提供给模型位置信息:
P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d model ) P E ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i / d model ) (eq.1) PE_{(pos,2i)} = sin(pos / 10000^{2i/d_{\text{model}}}) \quad PE_{(pos,2i+1)} = cos(pos / 10000^{2i/d_{\text{model}}})\tag{eq.1} PE(pos,2i)=sin(pos/100002i/dmodel)PE(pos,2i+1)=cos(pos/100002i/dmodel)(eq.1) 上式中 p o s pos pos指的是句中字的位置, 取值范围是 [ 0 ,   m a x   s e q u e n c e   l e n g t h ) [0, \ max \ sequence \ length) [0, max sequence length), i i i指的是词向量的维度, 取值范围是 [ 0 ,   e m b e d d i n g   d i m e n s i o n ) [0, \ embedding \ dimension) [0, embedding dimension), 上面有 s i n sin sin c o s cos cos一组公式, 也就是对应着 e m b e d d i n g   d i m e n s i o n embedding \ dimension embedding dimension维度的一组奇数和偶数的序号的维度, 例如 0 , 1 0, 1 0,1一组, 2 , 3 2, 3 2,3一组, 分别用上面的 s i n sin sin c o s cos cos函数做处理, 从而产生不同的周期性变化, 而位置嵌入在 e m b e d d i n g   d i m e n s i o n embedding \ dimension embedding dimension维度上随着维度序号增大, 周期变化会越来越慢, 而产生一种包含位置信息的纹理, 就像论文原文中第六页讲的, 位置嵌入函数的周期从 2 π 2 \pi 2π 10000 ∗ 2 π 10000 * 2 \pi 100002π变化, 而每一个位置在 e m b e d d i n g   d i m e n s i o n embedding \ dimension embedding dimension维度上都会得到不同周期的 s i n sin sin c o s cos cos函数的取值组合, 从而产生独一的纹理位置信息, 模型从而学到位置之间的依赖关系和自然语言的时序特性.

  1. s e l f   a t t e n t i o n   m e c h a n i s m self \ attention \ mechanism self attention mechanism, 自注意力机制;

Attention Mask

注意, 在上面 s e l f   a t t e n t i o n self \ attention self attention的计算过程中, 我们通常使用 m i n i   b a t c h mini \ batch mini batch来计算, 也就是一次计算多句话, 也就是 X X X的维度是 [ b a t c h   s i z e ,   s e q u e n c e   l e n g t h ] [batch \ size, \ sequence \ length] [batch size, sequence length], s e q u e n c e   l e n g t h sequence \ length sequence length是句长, 而一个 m i n i   b a t c h mini \ batch mini batch是由多个不等长的句子组成的, 我们就需要按照这个 m i n i   b a t c h mini \ batch mini batch中最大的句长对剩余的句子进行补齐长度, 我们一般用 0 0 0来进行填充, 这个过程叫做 p a d d i n g padding padding.
但这时在进行 s o f t m a x softmax softmax的时候就会产生问题, 回顾 s o f t m a x softmax softmax函数 σ ( z ) i = e z i ∑ j = 1 K e z j \sigma (\mathbf {z} )_{i}={\frac {e^{z_{i}}}{\sum _{j=1}^{K}e^{z_{j}}}} σ(z)i=j=1Kezjezi, e 0 e^0 e0是1, 是有值的, 这样的话 s o f t m a x softmax softmax中被 p a d d i n g padding padding的部分就参与了运算, 就等于是让无效的部分参与了运算, 会产生很大隐患, 这时就需要做一个 m a s k mask mask让这些无效区域不参与运算, 我们一般给无效区域加一个很大的负数的偏置, 也就是: z i l l e g a l = z i l l e g a l + b i a s i l l e g a l z_{illegal} = z_{illegal} + bias_{illegal} zillegal=zillegal+biasillegal b i a s i l l e g a l → − ∞ bias_{illegal} \to -\infty biasillegal e z i l l e g a l → 0 e^{z_{illegal}} \to 0 ezillegal0 经过上式的 m a s k i n g masking masking我们使无效区域经过 s o f t m a x softmax softmax计算之后还几乎为 0 0 0, 这样就避免了无效区域参与计算.
3. L a y e r   N o r m a l i z a t i o n Layer \ Normalization Layer Normalization和残差连接.

1). 残差连接:
我们在上一步得到了经过注意力矩阵加权之后的 V V V, 也就是 A t t e n t i o n ( Q ,   K ,   V ) Attention(Q, \ K, \ V) Attention(Q, K, V), 我们对它进行一下转置, 使其和 X e m b e d d i n g X_{embedding} Xembedding的维度一致, 也就是 [ b a t c h   s i z e ,   s e q u e n c e   l e n g t h ,   e m b e d d i n g   d i m e n s i o n ] [batch \ size, \ sequence \ length, \ embedding \ dimension] [batch size, sequence length, embedding dimension], 然后把他们加起来做残差连接, 直接进行元素相加, 因为他们的维度一致:
X e m b e d d i n g + A t t e n t i o n ( Q ,   K ,   V ) X_{embedding} + Attention(Q, \ K, \ V) Xembedding+Attention(Q, K, V) 在之后的运算里, 每经过一个模块的运算, 都要把运算之前的值和运算之后的值相加, 从而得到残差连接, 训练的时候可以使梯度直接走捷径反传到最初始层: X + S u b L a y e r ( X ) (eq. 5) X + SubLayer(X) \tag{eq. 5} X+SubLayer(X)(eq. 5) 2). L a y e r N o r m LayerNorm LayerNorm:
L a y e r N o r m a l i z a t i o n Layer Normalization LayerNormalization的作用是把神经网络中隐藏层归一为标准正态分布, 也就是 i . i . d i.i.d i.i.d独立同分布, 以起到加快训练速度, 加速收敛的作用: μ i = 1 m ∑ i = 1 m x i j \mu_{i}=\frac{1}{m} \sum^{m}_{i=1}x_{ij} μi=m1i=1mxij 上式中以矩阵的行 ( r o w ) (row) (row)为单位求均值; σ j 2 = 1 m ∑ i = 1 m ( x i j − μ j ) 2 \sigma^{2}_{j}=\frac{1}{m} \sum^{m}_{i=1} (x_{ij}-\mu_{j})^{2} σj2=m1i=1m(xijμj)2 上式中以矩阵的行 ( r o w ) (row) (row)为单位求方差; L a y e r N o r m ( x ) = α ⊙ x i j − μ i σ i 2 + ϵ + β (eq.6) LayerNorm(x)=\alpha \odot \frac{x_{ij}-\mu_{i}} {\sqrt{\sigma^{2}_{i}+\epsilon}} + \beta \tag{eq.6} LayerNorm(x)=ασi2+ϵ xijμi+β(eq.6) 然后用每一行的每一个元素减去这行的均值, 再除以这行的标准差, 从而得到归一化后的数值, ϵ \epsilon ϵ是为了防止除 0 0 0;
之后引入两个可训练参数 α ,   β \alpha, \ \beta α, β来弥补归一化的过程中损失掉的信息, 注意 ⊙ \odot 表示元素相乘而不是点积, 我们一般初始化 α \alpha α为全 1 1 1, 而 β \beta β为全 0 0 0.
4. t r a n s f o r m e r   e n c o d e r transformer \ encoder transformer encoder整体结构.

经过上面3个步骤, 我们已经基本了解到来 t r a n s f o r m e r transformer transformer编码器的主要构成部分, 我们下面用公式把一个 t r a n s f o r m e r   b l o c k transformer \ block transformer block的计算过程整理一下:
1). 字向量与位置编码:
X = E m b e d d i n g L o o k u p ( X ) + P o s i t i o n a l E n c o d i n g (eq.2) X = EmbeddingLookup(X) + PositionalEncoding \tag{eq.2} X=EmbeddingLookup(X)+PositionalEncoding(eq.2) X ∈ R b a t c h   s i z e   ∗   s e q .   l e n .   ∗   e m b e d .   d i m . X \in \mathbb{R}^{batch \ size \ * \ seq. \ len. \ * \ embed. \ dim.} XRbatch size  seq. len.  embed. dim. 2). 自注意力机制:
Q = L i n e a r ( X ) = X W Q Q = Linear(X) = XW_{Q} Q=Linear(X)=XWQ K = L i n e a r ( X ) = X W K (eq.3) K = Linear(X) = XW_{K} \tag{eq.3} K=Linear(X)=XWK(eq.3) V = L i n e a r ( X ) = X W V V = Linear(X) = XW_{V} V=Linear(X)=XWV X a t t e n t i o n = S e l f A t t e n t i o n ( Q ,   K ,   V ) (eq.4) X_{attention} = SelfAttention(Q, \ K, \ V) \tag{eq.4} Xattention=SelfAttention(Q, K, V)(eq.4) 3). 残差连接与 L a y e r   N o r m a l i z a t i o n Layer \ Normalization Layer Normalization X a t t e n t i o n = X + X a t t e n t i o n (eq. 5) X_{attention} = X + X_{attention} \tag{eq. 5} Xattention=X+Xattention(eq. 5) X a t t e n t i o n = L a y e r N o r m ( X a t t e n t i o n ) (eq. 6) X_{attention} = LayerNorm(X_{attention}) \tag{eq. 6} Xattention=LayerNorm(Xattention)(eq. 6) 4). 下面进行 t r a n s f o r m e r   b l o c k transformer \ block transformer block结构图中的第4部分, 也就是 F e e d F o r w a r d FeedForward FeedForward, 其实就是两层线性映射并用激活函数激活, 比如说 R e L U ReLU ReLU:
X h i d d e n = A c t i v a t e ( L i n e a r ( L i n e a r ( X a t t e n t i o n ) ) ) (eq. 7) X_{hidden} = Activate(Linear(Linear(X_{attention}))) \tag{eq. 7} Xhidden=Activate(Linear(Linear(Xattention)))(eq. 7) 5). 重复3).: X h i d d e n = X a t t e n t i o n + X h i d d e n X_{hidden} = X_{attention} + X_{hidden} Xhidden=Xattention+Xhidden X h i d d e n = L a y e r N o r m ( X h i d d e n ) X_{hidden} = LayerNorm(X_{hidden}) Xhidden=LayerNorm(Xhidden) X h i d d e n ∈ R b a t c h   s i z e   ∗   s e q .   l e n .   ∗   e m b e d .   d i m . X_{hidden} \in \mathbb{R}^{batch \ size \ * \ seq. \ len. \ * \ embed. \ dim.} XhiddenRbatch size  seq. len.  embed. dim.

小结:
我们到现在位置已经讲完了transformer的编码器的部分, 了解到了transformer是怎样获得自然语言的位置信息的, 注意力机制是怎样的, 其实举个语言情感分类的例子, 我们已经知道, 经过自注意力机制, 一句话中的每个字都含有这句话中其他所有字的信息, 那么我们可不可以添加一个空白字符到句子最前面, 然后让句子中的所有信息向这个空白字符汇总, 然后再映射成想要分的类别呢? 这就是BERT, 我们下次会讲到.
在BERT的预训练中, 我们给每句话的句头加一个特殊字符, 然后句末再加一个特殊字符, 之后模型预训练完毕之后, 我们就可以用句头的特殊字符的 h i d d e n   s t a t e hidden \ state hidden state完成一些分类任务了.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值