预训练语言模型中Transfomer模型、自监督学习、BERT模型概述(图文解释)

文章介绍了Transformer模型的结构,其由多个包含多头自注意力机制和全连接前馈神经网络的层组成,以及解码器中的位置掩码机制。此外,文章探讨了自监督学习的不同形式,如BERT等模型如何通过自监督预训练提升语义表征能力,强调了自监督学习在自然语言处理任务中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Transformer变换器模型


Transformer模型的编码器是由6个完全相同的层堆叠而成,每一层有两个子层 。

第一个子层是多头自注意力机制层,第二个子层是由一一个简单的、按逐个位置进行全连接的前馈神经网络。在两个子层之间通过残差网络结构进行连接,后接一一个层正则化层。可以得出,每一一个子层的输出通过公式可以表示为LayerNorm(x + Sublayer(x)),其中,Sublayer(x)函数由各个子层独立实现。为了方便各层之间的残差连接,模型中所有的子层包括嵌人层,固定输出的维度为512。Transformer 模型网络架构如图2.2所示。

Transformer模型的解码器也是由6个完全相同的层堆叠而成。除了编码器中介绍过的两个子层之外解码器还有第三个子层用于对编码器对的输出实现多头注意力机制。与编码器类似,使用残差架构连接每个子层,后接 一个层正则化层。对于解码器对的掩码自注意力子层,原论文对结构做了了改变来防止当前序列的位置信息和后续序列的位置信息混在一起。 这样的一个位置掩码操作作,再加上原有输出嵌入端对位置信息做悄难,我可以确保对位置;的预测仅依赖于已知的位置:之前的输出,而不会依赖于位置i之后的输出。

Transformer采用多头自注意力(multitheadsltentin)机制通过联合处理来自序列中不同表征子空间的不同位置的信息来来计算序列语义表征,利用不同的自注意力模块获得文本中每个词在不同语义空间下与原始词向量长度)相同的上下文语义向量在一系列任务中都表现很好

 

<think>好的,用户想了解Transformer的功能和用途。首先,我需要回顾一下Transformer的基本结构和工作原理。Transformer最初是在2017年的论文《Attention Is All You Need》中提出的,主要用于自然语言处理任务,但后来也被广泛应用到其他领域,比如计算机视觉。 用户的问题包括功能和用途,所以我需要分两部分回答。功能方面,核心是自注意力机制,能够捕捉长距离依赖,并行计算能力强,还有位置编码来理解序列顺序。应用场景的话,自然语言处理肯定是重点,比如机器翻译、文本生成,然后还有计算机视觉中的图像分类、目标检测,以及多模态任务,比如视觉问答。 接下来要确保回答结构清晰。可能需要分点说明功能和用途,每个部分用例子和引用来支持。用户提供的引用里提到了Vision Transformer(ViT)在图像分类中的应用,还有BERT、RoBERTa在NLP中的表现,这些都可以作为例子引用进去。同时,用户示例中的代码部分可能涉及到词嵌入和Transformer块,但用户现在的问题更偏向于概述,所以不需要深入代码细节,但可以提到这些组件的作用。 还要注意用户提到的系统级指令,比如数学表达式用$...$,独立公式用$$...$$。但当前问题可能不需要数学公式,除非提到具体算法,比如自注意力的计算。不过根据用户的问题,可能不需要深入公式,所以可能可以省略。但如果有必要的话,可以简要说明自注意力机制的计算方式,比如$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$,但需要放在独立公式块里。 另外,需要生成相关问题。可能的问题包括Transformer的优势、与传统模型的比较、具体应用案例、训练挑战等。要确保问题相关且有深度,帮助用户进一步探索。 检查引用部分,引用[1]和[2]提到了ViT和BERT,这些可以作为应用场景的例子。引用[3]提到了词嵌入和Transformer块的结构,可能在功能部分提到模块化设计时引用。 最后,确保用中文回答,语言自然,结构清晰,分点列出,引用标记正确。可能需要避免使用太多技术术语,但用户的问题比较专业,适当使用术语是可以的。还要注意不要复制引用内容,而是用自己的话总结,并正确标注来源。</think>### Transformer架构的功能及其应用场景 #### 一、核心功能 1. **自注意力机制** Transformer 的核心是 **多头自注意力机制**(Multi-Head Self-Attention),通过计算输入序列中每个元素与其他元素的关系权重,动态捕捉长距离依赖。例如,在句子“猫追老鼠,因为它饿了”中,模型能通过注意力机制识别“它”指代的是“猫”[^2]。 2. **并行化计算** 与循环神经网络(RNN)逐词处理的顺序计算不同,Transformer 可对整个序列进行并行计算,显著提升训练效率。例如,在 GPU 上处理长度为$n$的序列时,计算复杂度为$O(n^2)$,但并行性大幅减少了实际耗时[^3]。 3. **位置编码** 通过正弦函数或可学习的位置嵌入,为输入序列添加位置信息,解决自注意力机制对顺序不敏感的问题。位置编码公式为: $$PE_{(pos,2i)} = \sin(pos/10000^{2i/d})$$ $$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d})$$ 其中$pos$为位置,$i$为维度索引[^3]。 --- #### 二、应用场景 1. **自然语言处理(NLP)** - **机器翻译**:如 Google 的 Transformer 原始论文实现了英语到德语的翻译任务[^2]。 - **文本生成**:GPT-3 等模型可生成连贯的新闻、故事甚至代码。 - **问答系统**:BERT 通过预训练和微调在 SQuAD 问答任务中达到人类水平[^2]。 2. **计算机视觉(CV)** - **图像分类**:Vision Transformer(ViT)将图像分割为块序列输入模型,在 ImageNet 上达到与 CNN 相当的性能[^1]。 - **目标检测**:DETR 模型利用 Transformer 实现端到端检测,无需手工设计锚框[^1]。 3. **多模态任务** - **图文匹配**:CLIP 模型联合训练图像和文本编码器,实现跨模态检索。 - **视频理解**:通过时空注意力机制处理视频帧序列,用于动作识别[^3]。 --- #### 三、优势与局限 - **优势**:长距离依赖建模、并行计算、可扩展性强(如 GPT-3 参数量达 1750 亿)。 - **局限**:计算资源消耗大(如 ViT 需大量数据预训练),对短序列可能过拟合[^1][^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值