fairness相关问题论文存档

这篇博客汇总了SIGIR2019会议上关于公平性问题的讨论,重点关注了在推荐系统(RS)中如何处理公平性,包括用户公平性的衡量方法。论文‘Fairness Through Awareness’提出了在算法设计中考虑公平性的思路,而另一篇工作则专注于后处理过程中的用户公平性问题。
摘要由CSDN通过智能技术生成
  1. Fairness & Discrimination in Retrieval & Recommendation
    SIGIR2019年上的关于fairness问题在RS中的讨论(https://fair-ia.ekstrandom.net/sigir2019-slides.pdf)
  2. Fairness Through Awareness (https://dl.acm.org/doi/pdf/10.1145/2090236.2090255)
  3. User Fairness in Recommender Systems
    关于在后处理(post-processing)过程中user fairness问题的衡量方法(https://arxiv.org/pdf/2006.05255)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值