拓扑排序原理

拓扑排序

在图论中,**拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)**的所有顶点的线性序列。且该序列必须满足下面两个条件:
1、每个顶点出现且只出现一次。
2、若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

算法思想

  • 拓扑排序流程为BFS
  • 流程如下
    1 首先找到第一个入度为0 的点 放入待处理队列,记录答案拓扑数组中 拓扑的必要条件
    2 然后从该点连接的各个点 做以下操作:
    2.1 删除该边后,查看从该点连接的的点的入度
    2.2 如果入度为0 那么该点放入待处理队列,记录答案拓扑数组中, 再次进行BFS 直到待处理队列为空

演示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NR4AVQ6v-1591067242752)(../../图库/1590238472134.png)]

特点

  • 时间复杂度:O(n+m)。要遍历每一个点和边
  • 能够查是否有环
  • 依靠bfs实现

模板

int n, m;
int h[N], e[N], ne[N], idx;
int d[N]; // 入度
queue<int> q;

bool toposort()
{   // 将所有入度为0的点入队
    for (int i = 1; i <= n; i++)
        if (!d[i]){
             q.push(i);
             cnt++;
        }
           

    while (!q.empty())
    {
        int t = q.front();
        q.pop();

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (--d[j] == 0){
                q.push(j);
                cnt++;
            }
        }
    }
    // 所有点都入队了,说明是有向无环图,存在拓扑序
    return cnt == n ; 
}

例题

有向图的拓扑序列

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dje7jJJ9-1591067242757)(../../图库/1590240538269.png)]

题意
  • 没啥好说的拓扑排序
  • 这里如果拓扑可以排序,那么输出序列。
  • 如果不可以。输出-1
  • 因此需要设置一个p数组,保存入队的顺序
代码
//
//

#include <bits/stdc++.h>
using namespace std;
const int N = 1e7;
int n,m;
int h[N],ne[N],e[N],idx;
int rd[N];//入度
queue<int > q;
int cnt;//统计加入队列中的点数目
int p[N];//存放输出顺序
void add(int a ,int b){
    e[idx] = b; ne[idx] = h[a]; h[a] = idx++;
}

bool toposort(){
    for (int i = 1; i <= n; ++i) {
        if(!rd[i]) {
            cnt++;
            q.push(i); // 入度为0 放入
            p[cnt] = i;
        }

    }

    while(!q.empty()){
        int t = q.front();
        q.pop();
        for (int i = h[t]; i != -1 ; i = ne[i]) {
            int j = e[i];
            if(--rd[j] == 0){
                q.push(j);
                cnt++;
                p[cnt] = j;
            }
        }
    }
    return cnt == n;
}
int main(){
    memset(h,-1,sizeof h);
    cin >> n >> m;

    //统计入度
    for (int i = 0; i < m ; ++i) {
        int a,b;
        cin >> a >> b;
        rd[b]++;
        add(a,b);
    }

    if(!toposort()) cout << -1;
    else{
        //如果拓扑成序
        for (int i = 1; i <= n; ++i) {
            cout << p[i] << " ";
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值