提供源代码及说明文档。
设有一周期信号 x( t) = Acos( 2πf0+ t + θ) ,其傅里
对于 N 点序列 其信号频率为 f0 ,采样频率为 fs,其 DFT 的反变换表达式为
那么我们可以将 N 点 序列 x(n) 视为向量, 可以形成一组基,而 x(n) 可以被视为这组基的
线性组合。 在基底处为 x(n) ,坐标为 。
每个 都是一个复正弦序列。如果信号频率是 , 表示频率为的 复正弦序列,则 对应坐标 X(k)具有非常清晰的物理含义,可以直接计算出信 号的幅度和相位。如果信号 ,则将产生频谱泄漏 .e0,e1, ⋯,eN-1 乘以 N 个点 Δ序列。同时,我们可以得到一组新的基数ƿ 0, ƿ 1, ⋯, ƿ ?−1 。
ƿ k = e j 2Nπ nk e −j 2Nπ nΔK = e j 2Nπ n(k+ΔK)
在这组基数下,X(n)的坐标是ƿ(0), ƿ(1), ⋯,ƿ(? − 1) 。它也可以表示为:
x(n) = kN=−01 Xƿ(k)e
ƿ k = e −j 2Nπ nΔK kN=−0