改进的基于相位差法的频谱校正方法

本文探讨了一种改进的频谱校正方法,利用相位差法来精确计算信号的幅度和相位。通过N点序列的傅里叶变换,讨论了如何形成基底并计算坐标,特别关注了信号频率与采样频率的关系。当信号频率落在离散频谱线之间导致频谱泄漏时,提出通过频率偏移来对齐谱线,减少泄漏影响。这种方法提供了无需DFT或FFT的快速计算途径。
摘要由CSDN通过智能技术生成

提供源代码及说明文档。

设有一周期信号 x( t) = Acos( 2πf0+ t + θ) ,其傅里

 

 

 

 对于 N 点序列 其信号频率为 f0 ,采样频率为 fs,其 DFT 的反变换表达式为
那么我们可以将 N 点 序列 x(n) 视为向量, 可以形成一组基,而 x(n) 可以被视为这组基的
线性组合。 在基底处为 x(n) ,坐标为 。
每个 都是一个复正弦序列。如果信号频率是 , 表示频率为的 复正弦序列,则 对应坐标 X(k)具有非常清晰的物理含义,可以直接计算出信 号的幅度和相位。如果信号 ,则将产生频谱泄漏 .e0,e1, ⋯,eN-1 乘以 N 个点 Δ序列。同时,我们可以得到一组新的基数ƿ 0, ƿ 1, ⋯, ƿ ?−1 。
ƿ k = e j 2Nπ nk e −j 2Nπ nΔK = e j 2Nπ n(k+ΔK)
在这组基数下,X(n)的坐标是ƿ(0), ƿ(1), ⋯,ƿ(? − 1) 。它也可以表示为:
x(n) = ෍ kN=−01 Xƿ(k)e
ƿ k = e −j 2Nπ nΔK ෍ kN=−0

离散频谱的比值校正-频谱分析的校正方法.pdf 离散频谱的比值校正 在下帖子中讨论了“Matlab中FFT求正玹序列的振幅”https://www.ilovematlab.cn/thread-50611-1-1.html 我在帖子中指出了当“正弦信号的频率不与FFT后的某条谱线相合”,可用校正来求正弦信号的频率。在这里提供一个比值校正的程序,它已编写成一个函数,该方法的理论可参看以下附件。 function Z=Specorr [nx,mx]=size; if mx==1, x=x';end [nx,mx]=size; if mx<N     x=[x zeros]; else     x=x; end w=hann; if method==2     xf=fft;     xf=xf/N*4;     WindowType=2; else     xf=fft;     xf=xf/N*2;     WindowType=1; end ddf=fs/N; n1=fix; n2=round;     A=abs;     [Amax,index]=max);     index=index n1-1;     phmax=angle);     %比值     %加矩形窗     if         indsecL=A>A;         df=indsecL.*A./)-.*A./);         Z=*ddf;         Z=Amax/sinc;         Z=;              end         %比值     %加Hanning窗     if         indsecL=A>A;         df=indsecL.*-Amax)./)-.*-Amax)./);         Z=*ddf;         Z=*Amax/sinc;         Z=;              end     Z=mod,2*pi);     Z=Z->pi)*pi; 调用格式是 Z=Specorr 其中输入变量 x     是被测信号   fs    采样频率 N    FFT的长度(相当于nfft) nx1,nx2   被测正弦信号频率的区间,nx2>nx1 method   窗函数的方法,1为矩形窗,2为海宁窗 输出变量Z,Z为被测信号的频率,Z为被测信号的幅值,Z为被测信号的初始相角 这里把https://www.ilovematlab.cn/thread-50611-1-1.html 帖子中1层的程序修改一下列于 Fs=1000; n=0:1/Fs:1; xn=10 15*sin randn); nfft=1024; Xn = fftshift); Xn=Xn/2; A=2*abs/Fs; subplot,plot subplot stem xlabel,ylabel P=Xn.*conj/nfft; xlim Z=Specorr 这样得到Z为 Z =    10.0003   15.0009    1.5693 信号频率为10.0003,幅值为15.0009,初始相角为1.5693。初始相角是以余弦信号为准,正弦信号正好差pi/2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>