1.0 原子物理学——原子模型(葡萄干面包、卢瑟福原子核式)

原子物理学对量子通讯、量子计算机、精密测量(原子钟、原子磁力计、原子陀螺仪)、多门学科(分子光谱、生物结构、医药、材料)都有着重要的意义。

原子的卢瑟福模型:原子的卢瑟福模型即原子的核式模型,原子由原子核和核外电子构成

 1、早期人们对原子的认知

原子,英文Atom源自希腊文,意味“不可分割的”。

(1)十九世纪以前->哲学角度、思想角度

在公元前 4 世纪,古希腊哲学家德漠克利特 (Democritus)提出原子这一概念,并把它看作物质的最小单元。

亚里士多德认为组成世界的事物是连续的,如水、气、火。

(2)十九世纪->实验技术发展,认识了一些定律

定比定律:元素按一定的物质比相互化合。如水是由两个氢原子和一个氧原子相互化合,且氢和氧的质量比例是1:8;

倍比定律:若两种元素能生成几种化合物,则在这些化合物中,与一定质量的甲元素化合的乙元素的质量,互成简单整数比

 道尔顿物质是由原子组成的,原子是不可分割的最基本粒子。其观念具体可分为以下三点:

1)一定质量的某种元素,由极大数目的该元素的原子所构成;

2)每种元素的原子,都具有相同的质量,不同元素的原子,具有不相同的质量;

3)两种可以化合的元素,它们的原子可以按几种不同的比率化合成几种不同的分子。

针对气体的重量与体积,科研人员在实验中发现气态物质参与的化学反应也遵循上诉规律,提出了盖·吕萨克定律和阿伏伽德罗定律:

盖·吕萨克定律:在每一种生成或分解的气体中,组分和化合物气体的体积彼此之间具有简单的整数比 。元素气体在相等体积中的重量应正比于它的原子量。

阿伏伽德罗定律:同温同压下,相同体积的不同气体含有相等数目的分子。也可表述为:一摩尔体积大的气体中包含有 N_A=6.0221367\times 10^23 mol ^{-1}1 个分子。

(3)原子有多大

假设原子是半径为r的球体,原子之间紧密的堆叠在一起,如果这个元素的原子量是A(g/mol),我们知道1mol该原子的质量为A克,并测得该原子的密度为\rho(g/cm^3),则总体积为:A/\rho(cm^3).

原子体积4/3 \pi r^3,则可以得到等式4/3 \pi r^3 * N_A = A / \rho,从而可以得到原子的半径为:

r=\sqrt[3]{3A/ 4 \pi \rho N_A},因此原子的体积与质量、质量密度、阿伏伽德罗常数都有关,就可以得到不同原子的半径。如下表:

 2、原子的葡萄干面包模型

中学时,原子学习到原子是由电子、质子、中子组成。

电子发现的基础:

1811年, 阿伏伽德罗( A.Avogadno )定律 问世,提出 1mol 任何原子的数目都是一定的。

1833年, 法拉第( M.Faraday 提出电解定律,1mol 任何原子的单价离子(带一个电荷)永远带有相同的电量 即法拉第常数。 F = 9.65 x 10 4 C/ mol

1874年, 斯迪尼( G.T.Stoney 综合上述两个定律,指出原子所带电荷为一个电荷的整数倍,这个电荷是斯迪尼提出,用“电子”来命名这个电荷的最小单位。e=F/N A

1897年汤姆逊(J.J.Thomson)发现电子: 通过阴极射线管中电子荷质比的测量,汤姆逊确立了电子的存在。

灯丝发出一定的射线(阴极射线),阴极射线通过前面的小孔C之后,形成非常细的阴极射线到达电极板,电极板上加一定的电压,如果阴极射线具有电量,就会在阴极板附件产生轨道的偏移。实验发现:

  • 当在平行极板上加电场 ,发现阴极射线打在荧光屏上的位置向下偏,则可判定,阴极射线带有负电荷;
  • 为使阴极射线不发生偏转, 则在平行极板区域加一磁场且磁场方向必须垂直纸面向外 。当满足条件qv_0 B =qE (带电粒子受到的洛仑磁力和电场力相等)时,则阴极射线不发生偏转。可推出阴极射线运动速度:v_0 = E / B
  • 不加磁场,带电的阴极射线在电场中:F=E q=m a,射线在竖直方向离开电场的速度:v_t=a t_1,屏幕上:y=y_1+y_2=\frac{1}{2} a t_1^2+v_t t_2,其中,t_1=L / v_0, t_2=D / v_0。可以得到:y=\frac{E q L}{m v_0^2}\left(\frac{1}{2} L+D\right)v_0=\frac{E}{B}),最后可以得到阴极射线的荷质比:\frac{q}{m}=\frac{E y}{\left(D+\frac{L}{2}\right) B^2 L}

阴极射线荷质比:

\frac{q}{m}=\frac{E y}{\left(D+\frac{2}{2}\right) B^2 L}

实验结果:汤姆孙发现,用不同材料的阴极射线实验所得荷质比的数值是相等的。说明这种粒子是构成各种物质的共有成分 。并由实验测得的阴极射线粒子的荷质比是氢离子荷质比的近两千倍 。

至此可以说汤姆逊已发现了一种比原子小的粒子,但是这种粒子的荷质 比约 是氢离子荷质 比的 近
2000 倍。这里有两种可能,可能电荷 e 很大,也可能质量 m 很小。要想确证这个结论,必须寻找更直接的证据 。

1898年, 汤姆逊运用 云雾法测定阴极射线粒子的电荷同电解中氢离子所带的电荷是同一数量级,从而直接证明了阴极射线粒子的质量只是氢离子的 1‰ 。汤姆逊把新发现的这种粒子称之为电子( electron )

汤姆逊实验之后:原子中存在电子,它的质量占整个原子质量的很小一部分;电子带负电,原子中性,推断原子 中存在正电荷且质量很大

葡萄干面包模型/西瓜模型/汤姆逊模型:原子中正电荷均匀分布在原子球体内,电子 镶嵌其中 。原子如同葡萄干,面包好比正电荷,电子如同葡萄干分布在其中。

同时该模型还进一步假定,电子分布在分离的同心环上,每个环上的电子容量都不相同,第一个环 5个电子,第二个环10个电子,电子在各自的平衡位置附近做微振动。因而可以发出不同频率的光,而且各层电子绕球心转动时也会发光。这环状分布能够 解释当时已有的实验结果、元素的周期性以及原子的线型光谱 。

3、卢瑟福原子核式模型

(1)卢瑟福简介

卢瑟福(1871-1939)是物理学家,学术界公认卢瑟福为继法拉第之后最伟大的实验物理学家。

1895 年进卡文迪许实验室,成为J.J.Thomson 的研究生;

1925 年当选为英国皇家学会主席。;

培养了 11 名诺贝尔奖获得者,是至今世界上培养诺贝尔奖获得者最多的导师;

卢瑟福对于放射性的研究,开拓了原子核物理学和原子物理学的新领域,被称为原子核之父;

对原子物理学和原子核物理学的重要贡献:

1899 年, 28 岁的卢瑟福发现了放射性元素钍和新型放射线;

1902 年他发现一种原子可以蜕变为另一种原子,否定了原子永远不变的旧观念,获 1908 年诺贝
尔化学奖;

1911 年提出原子核式模型;

1919 年发现了质子,还实现了人类历史上第一个核反应:{ }^{14} \mathrm{~N}+{ }^4 \mathrm{He} \rightarrow{ }^{17} \mathrm{O}+{ }^1 \mathrm{H}

1920 年,卢瑟福提出了中子假说;

(2)α粒子散射实验

卢瑟福于1911年设计了α粒子散射实验(二价氦离子,氦的同位素,失去两个电子,无中子,因此存在着很大的斥力)

下图为α粒子轰击原子的实验装置图

α粒子由铅盒中的放射性物质放出,在铅盒中开一个小孔,形成非常细的α粒子束,α粒子束到达金属板上发生碰撞散射。由于每一个粒子受到金属板中的作用不同,因此,散射后悔沿着不同的散射角运动,探测器可以沿着以金属靶为中心的圆弧进行移动。实验中记录单位时间内,不同方向散射的α粒子数,研究不同散射角的计数分布情况。

实验现象:被散射的粒子大部分分布在小角度区域,但是大约有 1/8000 的粒子散射角 θ>90 度,甚至达到180 度 发生背反射 。

α 粒子发生这么大角度的散射,说明它受到的力很大。

接下来通过理论计算,看一下按照汤姆逊模型, α 粒子的最大偏转角可能是多少?

(3)理论计算,汤姆逊模型,α 粒子的最大偏转角

定量估计散射角大小:当一个α 粒子与靶原子进行碰撞,将电子额正电荷分开处理;

先只考虑正电荷(靶核的影响,这里基于汤姆逊模型,整个正电荷均匀分布)

电荷大小为Ze,半径为R,当α 粒子射向靶核时,收到的力记为F;

当粒子与带电球体的距离r,大于靶核半径,这时受力为(电荷之间受库仑力作用):F=(2 e) \bullet(Z e) /\left(4 \pi \varepsilon_0 r^2\right) \quad(r>R)

当粒子与带电球体的距离r,等于靶核半径,这时受力为:F=(2 e) \cdot(Z e) /\left(4 \pi \varepsilon_0 R^2\right) \quad(r=R)

当粒子与带电球体的距离r,小于靶核半径,这时受力为:Q==\left[\mathrm{Ze} /(4 / 3) \pi R^3\right] \times(4 / 3) \pi r^3=\mathrm{Zer}^3 / R^3F=2 e Q /\left(4 \pi \varepsilon_0 r^2\right)=2Z e^2 r /\left(4 \pi \varepsilon_0 R^3\right)

因此,α 粒子与靶核散射时,只有入射(r=R)时,入射α 粒子受力最大,记为F_{max}

α 粒子以初速度v,动量p向靶核进行运动,假设在靶核运动的整个过程α 粒子都是受到F_{max}的作用这时会产生一定的动量改变,离开原子后,动量记为p',这样:

\operatorname{tg} \theta=\Delta p / p

初始动量为p=mv,因此只需求出动量该变量就可以估算出偏转角;

由动量定理得:F_{\max } \bullet \Delta t=\Delta p

其中,\Delta t=\frac{2 R}{v}表示α粒子在原子附近度过的时间。带入F_{max}值,解得:\Delta P=\frac{1}{4 \pi \varepsilon} \bullet \frac{2 Z e^2}{R^2} \bullet\left(\frac{2 R}{v}\right)

所以:\operatorname{tg} \theta=\frac{\Delta p}{p}=\frac{\Delta p}{m_\alpha \nu}=\frac{2 Z e^2 / 4 \pi \varepsilon R}{E_\alpha}

带入常数,R~0.1nm,\operatorname{tg} \theta近似有:\operatorname{tg} \theta \approx \theta=3 \times 10^{-5} \frac{Z}{E_\alpha(\mathrm{MeV})}(\mathrm{rad})

其中:Z为靶原子核电荷数(十几到几十),E为入射α粒子的能量(几MeV到几十MeV),R为正电荷物质半径。

由上诉计算可见散射角是非常小的约为10^{-4}量级;

电子的质量仅为α粒子质量的1/8000,它的影响很小,假定电子初始速度为0。当α粒子与电子发生正碰时,可以近似看作弹性碰撞,动量与动能均守恒。碰撞后α粒子速度为V \alpha^{\prime},电子速度记为Ve。碰撞前后动量守恒公式:

m_\alpha \vec{v}_\alpha=m_\alpha \vec{v}_\alpha^{\prime}+m_e \overrightarrow{v_e} \rightarrow m_\alpha \bullet \Delta \overrightarrow{v_\alpha}=m_e v_e

其中,m_\alpha \vec{v}_\alpha为碰撞前α粒子的动量和,m_\alpha \vec{v}_\alpha^{\prime}+m_e \overrightarrow{v_e}为碰撞后α粒子和电子的动量和,得到:

\Delta v_\alpha=\frac{m_e}{m_\alpha} v_e

碰撞前后能量守恒公式:

\frac{1}{2} m_\alpha v_\alpha^2=\frac{1}{2} m_\alpha v_\alpha^{\prime 2}+\frac{1}{2} m_e v_e^2

其中,等式前面为碰撞前α粒子的能量,等式右侧为碰撞后α粒子和电子的能量,将公式进一步调整可以得到:

m_\alpha\left(v_a^2-v_\alpha^{12}\right)=m_e v_e^2

将公式进一步调整可以得到:

\left(v_\alpha+v_\alpha^{\prime}\right) \cdot\left(v_\alpha-v_\alpha^{\prime}\right)=\frac{m_e}{m_\alpha} v_e^2

其中,第一项由于电子的质量和初速度都非常小,因此设v_\alpha^{\prime} \approx v_\alpha,第二项为\Delta v_\alpha,公式可以简化为:

2 v_\alpha \cdot \Delta v_\alpha=\frac{m_e}{m_\alpha} v_e^2,可以得到:

v_\alpha=\frac{m_e v_e^2}{2 m_\alpha \Delta v_\alpha}

v_\alpha带入\frac{\Delta p}{p}中,

 \begin{aligned} \frac{\Delta p}{p} &=\frac{m_\alpha \Delta v_\alpha}{m_\alpha v_\alpha}=\frac{\Delta v_\alpha}{v_\alpha}=\frac{2 m_\alpha\left(\Delta v_\alpha\right)^2}{m_e v_e^2} \\ &=\frac{2 m_e}{m_\alpha} \end{aligned} =2 \times \frac{1}{8000}

总合可知\theta<10^{-4} \cdot \frac{Z}{E_\alpha}

能量为5MeV的α粒子轰击金原子(Z=79),最大散射角为:

\theta_{\max }=15.8 \times 10^{-4}(\mathrm{rad})=0.09^0

西瓜模型下,想要大角度散射需要α粒子连续与很多个金原子碰撞,每次散射方向要一致。但是实际偏转方向不可控制,根据计算大角度散射概率为10^{-3500}! 

即α粒子散射角都很小,故对于α粒子散射实验结果,葡萄干面包模型不成立。

(4)卢瑟福原子核式模型

1911年,卢瑟福年提出了原子的核式模型:原子中心有一个极小的原子核,它集中了
全部的正电荷和几乎所有的质量,所有电子都分布在它的周围。
由前面分析可知,粒子散射角度大小为:\operatorname{tg} \theta=F_{\max } \cdot \Delta t / p=\frac{2 Z e^2 / 4 \pi \varepsilon_0 R}{E_\alpha},原子中正电荷物质半径R越小,散射角越大,当α粒子无限接近原子核大小时,作用力将最大化,能够实现α粒子的大角度散射。

模型的验证

根据核式模型推导散射角理论公式——库伦散射公式

上图为带电粒子的库伦散射实验,了入射速度为v ,电荷为Z_1e 的带电粒子,与电荷为Z_2e 的靶核发生散射的情形。当粒子从远离靶核处射过来以后,在为库仑力的作用下,粒子的运动偏转了θ 角。可以证明,散射过程有下列关系:

库伦散射公式b=\frac{a}{2} \operatorname{ctg} \frac{\theta}{2}

其中b 是瞄准距离,表示入射粒子的最小垂直距离。a=\frac{Z e^2}{4 \pi \varepsilon_0 E}为库仑散射因子

为了简化推导过程,对散射进行以下四点假定:

  • 假定只发生 单次 散射,多次散射现象只有当 α粒子与原子核距离相近时,才会有明显的作用,所以发生散射的机会很少;
  • 假定粒子与原子核之间 只有库仑力相互作用,重力等其它作用力忽略;
  • 忽略核外电子的作用,这是由于核外电子的质量不到原子的千分之一,同时粒子运动的速度比较快,估算结果表明核外电子对散射的影响极小,所以可以忽略不计;
  • 假定 原子核静止。

如上图所示,α粒子在原子核Z_2e的库仑场中运动,任一时刻t时的位矢为\vec{r},作用前后α粒子的速度
分别为\vec{v}_o\vec{v}_t,任一时刻的速度为\vec{v}, α粒子的入射能量为E , α粒子受到原子核的斥力作用:

  1. α粒子受靶原子Z_2e斥力作用,根据牛顿第二定律:

\vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t},库仑力为:\vec{F}=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{2 Z e^2}{r^2} r_0

将上式联立可得:

m \cdot \frac{d \vec{v}}{d t}=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{2 Z e^2}{r^2} r_0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

autotian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值