题意:给定a、b、c,求a到b区间内与c互质的数。
分析:我们可以先转化下:用(1,b)区间与n互质的数的个数减去(1,a-1)区间与n互质的数的个数,那么现在就转化成求(1,m)区间于n
互质的数的个数,如果要求的是(1,n)区间与n互质的数的个数的话,我们直接求出n的欧拉函数值即可,可是这里是行不通的!我们不妨
换一种思路:就是求出(1,m)区间与n不互质的数的个数,假设为num,那么我们的答案就是:m-num!
举一组实例吧:假设m=12,n=30.
第一步:求出n的质因子:2,3,5;
第二步:(1,m)中是n的因子的倍数当然就不互质了(2,4,6,8,10)->n/2 6个,(3,6,9,12)->n/3 4个,(5,10)->n/5 2个。
如果是粗心的同学就把它们全部加起来就是:6+4+2=12个了,那你就大错特错了,里面明显出现了重复的,我们现在要处理的就是如何去掉那些重复的了!
第三步:这里就需要用到容斥原理了,公式就是:n/2+n/3+n/5-n/(2*3)-n/(2*5)-n/(3*5)+n/(2*3*5).
第四步:我们该如何实现呢?我在网上看到有几种实现方法:dfs(深搜),队列数组,位运算三种方法都可以!上述公式有一个特点:n除以奇数个数相乘的
时候是加,n除以偶数个数相乘的时候是减。我这里就写下用队列数组如何实现吧:我们可以把第一个元素设为-1然后具体看代码如何实现吧!
#include<cstdio>
int j,a[1000];
void init(int n)
{
int i;
j=0;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
{
a[j++]=i;
while(n%i==0)
n/=i;
}
}
if(n>1) a[j++]=n;
}
__int64 query(__int64 n)
{
__int64 b[10000],i,m,k,t=0,sum=0;
b[t++]=-1;
for(i=0;i<j;i++)
{
k=t;
for(m=0;m<k;m++)
{
b[t++]=b[m]*a[i]*(-1);
}
}
for(i=1;i<t;i++)
sum+=n/b[i];
return sum;
}
int main()
{
int n,i,t;
__int64 x,y,m;
scanf("%d",&t);
for(i=1;i<=t;i++)
{
scanf("%I64d%I64d%d",&x,&y,&n);
init(n);
m=y-query(y)-(x-1-query(x-1));
printf("Case #%d: %I64d\n",i,m);
}
}