Paper Reading
小铁匠_LR
这个作者很懒,什么都没留下…
展开
-
【Paper Reading】目标跟踪综述
A Review of Visual Trackers and Analysis of its Application to Mobile Robot2019 中国矿业大学摘要:计算机视觉是机器人获取外部环境信息的重要组成部分之一,近年来受到人们的广泛关注。视觉跟踪可以为移动机器人提供必要的物理和环境参数,他们的性能关系到机器人的实际应用。本研究对视觉追踪器进行了全面的调查,通过一个简短的介绍,我们首先分析了视觉跟踪的基本框架和难点,然后我们介绍了生成式结构和判别式结构的方法,总结了在视觉跟踪中用到的特原创 2020-06-12 22:55:39 · 668 阅读 · 3 评论 -
【Paper Reading】YOLO v4
论文地址:https://arxiv.org/abs/2004.10934论文代码:https://github.com/AlexeyAB/darknetIntroduction 论文提出YOLOv4,从图1的结果来看,相对于YOLOv3在准确率上提升了近10个点,然而速度并几乎没有下降,论文主要贡献如下:提出速度更快、精度更好的检测模型,仅需要单张1080Ti或2080Ti即可完成训练。验证了目前SOTA的Bag-ofFreebies(不增加推理成本的trick)和Bag-of-S..原创 2020-06-05 21:55:30 · 314 阅读 · 0 评论 -
【Paper Reading】YOLO YOLO v2
两篇写YOLO的文章:目标检测|YOLO原理与实现物体检测之YOLOv2原创 2020-05-16 15:16:01 · 169 阅读 · 0 评论 -
【Paper Reading】:YOLOv3: An Incremental Improvement
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental ImprovementYOLO系列的目标检测算法可以说是目标检测史上的宏篇巨作,接下来我们来详细介绍一下YOLO v3算法内容,v3的算法是在v1和v2的基础上形成的,所以有必要先回忆: 一文看懂YOLO v1,一文看懂YOLO v2。网络结构从这儿盗了张图,这张图很好的总结了YOLOV3的结构,让我们对YOLO有更加直观的理解。D...转载 2020-05-16 14:32:42 · 416 阅读 · 0 评论 -
【Paper Reading】Faster-RCNN
一文读懂Faster RCNNhttps://zhuanlan.zhihu.com/p/31426458转载 2020-05-06 16:18:11 · 210 阅读 · 0 评论 -
【Paper Reading】 Fast R-CNN论文详解
paper链接:Fast R-CNN &创新点规避R-CNN中冗余的特征提取操作,只对整张图像全区域进行一次特征提取;用RoI pooling层取代最后一层max pooling层,同时引入建议框信息,提取相应建议框特征;Fast R-CNN网络末尾采用并行的不同的全连接层,可同时输出分类结果和窗口回归结果,实现了end-to-end的多任务训练【建议框提取除外】,也不需要额外...转载 2020-05-05 13:46:01 · 350 阅读 · 0 评论 -
【Paper Reading】:目标检测——RCNN
Rich feature hierarchies for accurate object detection and semantic segmentation2014 CVPR加州大学伯克利分校前言在卷积神经网络在图像分类任务中相比传统的方法取得了巨大成功后,人们也在思考如何将CNNs应用到目标检测领域,这篇文章是首次用深度学习CNN的方式进行目标检测的尝试。取得了性能、准确度均大幅高于...原创 2020-05-01 16:11:05 · 382 阅读 · 0 评论 -
【Paper Reading】AdderNet: DoWe Really Need Multiplications in Deep Learning?
2020 CVPR北大 华为paper:https://arxiv.org/abs/1912.13200code:https://github.com/huawei-noah/AdderNet摘要与廉价的加法运算相比,乘法运算具有更高的计算复杂度。在深度神经网络中被广泛使用的卷积使用互相关来度量输入特征与卷积滤波器之间的相似性,这涉及到浮点值之间的大量乘法。本文提出的AdderNets中...原创 2020-04-24 19:39:15 · 963 阅读 · 0 评论 -
【Paper Reading】TTQ三值网络
TRAINED TERNARY QUANTIZATION2017 ICLR清华 斯坦福摘要提出一种将神经网络进行三值量化的方法,该方法精度下降很小,甚至可以提高某些模型的精度,32、44、56层ResNet在CIFAR-10上和ImageNet上的AlexNet。在推理过程中,只需要三元值(2bit权值)和比例因子,因此我们的模型比全精度模型小将近16倍。三元模型也可以看作是稀疏的二元权值...原创 2020-04-24 19:29:21 · 895 阅读 · 1 评论 -
【Paper Reading】Bi-Real Net
Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm2018 ECCV香港科技 腾讯 华科Paper:https://arxiv.org/abs/1808.00278v5Code:https:...原创 2020-04-24 14:40:00 · 592 阅读 · 0 评论 -
【Paper Reading】Towards Accurate Binary Convolutional Neural
2017NIPS大疆论文地址:https://arxiv.org/abs/1711.11294代码地址:https://github.com/layog/Accurate-Binary-Convolution-Network摘要本文介绍一种新的二进制卷积神经网络(CNNs)训练方案- CNNs的权重和激活限制在{-1,+1}。众所周知,使用二进制权值和激活可以极大地减少内存大小和访问,并...原创 2020-04-17 21:01:23 · 290 阅读 · 0 评论 -
【Paper Reading】Forward and Backward Information Retentionfor Accurate Binary Neural Networks
CVPR 2020商汤科技 北航文献地址:https://arxiv.org/abs/1909.10788源码地址: https://github.com/htqin/IR-Net摘要权值和激活二值化是一种有效的深度神经网络压缩方法,可以利用位操作加速前向推理。虽然许多二值化方法通过最小化前向传播的量化误差来提高模型的精度,但二值化模型与全精度模型之间仍存在明显的性能差距。我们的实证研究...原创 2020-04-17 16:26:56 · 1614 阅读 · 6 评论 -
【Paper Readind】:Ternary weight networks
Ternary weight networks2016 NIPS中科院 Fengfu Li and Bo Zhang摘要本文引入了权值为+1、0和-1的三元神经网络(TWNs)。最小化全精度(float或者double)的权重与三元权重之间的欧几里得距离。此外,对基于阈值的三值化函数进行了优化,能够更快速、且更易于计算地得到近似解。TWNs比最近提出的二值网络具有更强的表达能力,并且比后者...原创 2020-04-16 18:21:56 · 737 阅读 · 0 评论 -
【Paper Reading】XNOR-Net
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks2016 ECCV华盛顿大学 Mohammad Rastegari论文链接:https://arxiv.org/abs/1603.05279代码链接:http://allenai.org/plato/xnornet基于Pythoch的代码...原创 2020-04-10 17:38:24 · 390 阅读 · 0 评论 -
【Paper Reading】二值化网络——BNN
Binarized Neural Networks: Training Neural Networks withWeights and Activations Constrained to +1 or -1论文链接:https://arxiv.org/abs/1602.02830代码地址:https://github.com/MatthieuCourbariaux/BinaryNet2016...原创 2020-04-10 14:12:59 · 998 阅读 · 0 评论 -
【Paper Reading】Deep Learning with Limited Numerical Precision
【Paper Reading】Deep Learning with Limited Numerical Precision2015 《computer science》IBM Suyog Gupta背景深度学习技术的成功很大程度上取决于底层硬件平台的快速执行能力,使用大量标记数据对复杂网络进行监督训练。在以往的模型的训练中,训练的过程都是采用高精度的浮点数进行模型的训练,对硬件的存储和计算...原创 2020-04-09 22:44:29 · 807 阅读 · 0 评论