了解ARIMA模型,就需要先了解数据的一个平稳性。
1. 平稳性:
- 平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去;
- 平稳性要求序列的均值和方差不发生明显变化;
方差越大,数据波动越大,方差计算公式如下式所示:
方差等于1,那么标准差也就是1,表示概率函数在对称轴左右偏差1的位置导数为0,即为拐点。期望为0,表示概率函数以y轴为对称轴。
平稳性分为严平稳和弱平稳
- 严平稳:严平稳表示的分布不随时间的改变而改变,如:白噪声(正态),无论怎么取,都是期望为0,方差为1;
- 弱平稳:期望与相关系数(依赖性)不变,未来某时刻的t值Xt就要依赖于它的过去信息,所以需要依赖性;
那么如果我们拿到的数据波动很大,那么需要平稳这个数据,如何平稳这个数据呢?
2. 差分法:时间序列在t与t-1时刻的差值
差分法:(t5-t4),(t4-t3),(t3-t2),(t2-t1),在一阶差分后就可以得到二阶差分。
明白了平稳数据方法,于是下面介绍几个定义:
3. 自回归模型(AR)
- 描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测
- 自回归模