ARIMA模型(一)定义与介绍

本文介绍了ARIMA模型的基础知识,包括数据的平稳性、差分法、自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA)。重点讲述了ARIMA模型的构建过程,包括自相关函数(ACF)和偏自相关函数(PACF)在确定模型参数中的作用,并提到了模型残差的检验。
摘要由CSDN通过智能技术生成

了解ARIMA模型,就需要先了解数据的一个平稳性。

1. 平稳性:

  • 平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去;
  • 平稳性要求序列的均值方差不发生明显变化;

        方差越大,数据波动越大,方差计算公式如下式所示:

       

       方差等于1,那么标准差也就是1,表示概率函数在对称轴左右偏差1的位置导数为0,即为拐点。期望为0,表示概率函数以y轴为对称轴。

平稳性分为严平稳和弱平稳

  • 严平稳:严平稳表示的分布不随时间的改变而改变,如:白噪声(正态),无论怎么取,都是期望为0,方差为1;
  • 弱平稳:期望与相关系数(依赖性)不变,未来某时刻的t值Xt就要依赖于它的过去信息,所以需要依赖性;

那么如果我们拿到的数据波动很大,那么需要平稳这个数据,如何平稳这个数据呢?

2. 差分法:时间序列在t与t-1时刻的差值

                                     

             差分法:(t5-t4),(t4-t3),(t3-t2),(t2-t1),在一阶差分后就可以得到二阶差分。

明白了平稳数据方法,于是下面介绍几个定义:

3. 自回归模型(AR)

  • 描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测
  • 自回归模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值