文章目录
一、第一问
(一)经度与影长关系
完整代码 https://github.com/yan-fanyu/CUMCM-Paper-And-SourceCode
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
% 纬度
W = 39 + 54/60 + 26/3600;
Jm = 120;
JArr = [70 75 80 85 90 95 100 105 110 115 120 125 135 140 145 150 155 160 165 170 175];
LsArr = [];
m = 11;
nn = 30;
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for i = 1:21
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
J = JArr(i);
%A = WArr(i);
T0 = m + nn/60;
Ts = T0 + E/60 + (J - Jm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(F*pi/180) + cos(W*pi/180)*cos(F*pi/180)*cos(C*pi/180));
% 杆长 L = 3 m
L = 3;
% 影长 Ls
Ls = L/tan(Oh);
LsArr(i) = Ls;
end
plot(JArr, LsArr);
%axis([1 12 0 7]);
xlabel('经度(°E)');
ylabel('影长(米)');
title('不同经度与影长关系曲线');
(二)维度与影长关系
完整代码 https://github.com/yan-fanyu/CUMCM-Paper-And-SourceCode
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
W = 39 + 54/60 + 26/3600;
% 经度
J = 116 + 23/60 + 29/3600;
% 时区经度
Dm = 120;
LArr = [1 2 3 4 5 6 7 8 9 10 11 12];
JArr = [70 75 80 85 90 95 100 105 110 115 120 125 135 140 145 150 155 160 165 170 175];
WArr = [15 20 25 30 35 40 45 50 55 60 65 70];
DateArr = [1 32 60 91 121 152 182 213 244 274 305 335];
LsArr = [];
m = 11;
nn = 30;
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for i = 1:12
W = WArr(i);
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
%A = WArr(i);
T0 = m + nn/60;
Ts = T0 + E/60 + (J - Dm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(F*pi/180) + cos(W*pi/180)*cos(F*pi/180)*cos(C*pi/180));
% 杆长 L = 3 m
L = 3;
% 影长 Ls
Ls = L/tan(Oh);
LsArr(i) = Ls;
end
plot(WArr, LsArr);
%axis([1 12 0 7]);
xlabel('纬度(°E)');
ylabel('影长(米)');
title('不同纬度与影长关系曲线');
(三)日期与影长关系
完整代码 https://github.com/yan-fanyu/CUMCM-Paper-And-SourceCode
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
W = 39 + 54/60 + 26/3600;
% 经度
J = 116 + 23/60 + 29/3600;
% 时区经度
Jm = 120;
DateArr = [1 32 60 91 121 152 182 213 244 274 305 335];
Date = [1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1 12.1]
LsArr = [];
m = 11;
nn = 30;
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for i = 1:12
n = DateArr(i);
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
T0 = m + nn/60;
Ts = T0 + E/60 + (J - Jm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(F*pi/180) + cos(W*pi/180)*cos(F*pi/180)*cos(C*pi/180));
Ohh = Oh*180/pi;
% 杆长 L = 3 m
L = 3;
% 影长 Ls
Ls = L/tan(Oh);
LsArr(i) = Ls;
end
plot(Date, LsArr);
%axis([1 12 0 7]);
xlabel('日期');
ylabel('影长(米)');
title('不同日期与影长关系曲线');
(四)时间与影长关系
完整代码 https://github.com/yan-fanyu/CUMCM-Paper-And-SourceCode
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
W = 39 + 54/60 + 26/3600;
% 经度
J = 116 + 23/60 + 29/3600;
% 时区经度
Jm = 120;
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
ii = 0;
X = [];
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for m = 9:1:14
for nn = 0:10:59
ii = ii +1;
X(ii) = m+nn/60;
Hour(ii) = m;
Minute(ii) = nn;
T0 = m + nn/60;
Ts = T0 + E/60 + (J - Jm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(F*pi/180) + cos(W*pi/180)*cos(F*pi/180)*cos(C*pi/180));
Ohh = Oh*180/pi;
HH(ii) = Ohh;
% 杆长 L = 3 m
L = 3;
% 影长 Ls
Ls = L/tan(Oh);
LsArr(ii) = Ls;
end
end
plot(X, LsArr, 'red');
%axis([9 15 22 40]);
xlabel('时间');
ylabel('影子长度');
title('时间--影长');
(五)杆长与影长关系
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
W = 39 + 54/60 + 26/3600;
% 经度
J = 116 + 23/60 + 29/3600;
% 时区经度
Jm = 120;
LArr = [1 2 3 4 5 6 7 8 9 10 11 12];
LsArr = [];
m = 11;
nn = 30;
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for i = 1:12
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
%A = WArr(i);
T0 = m + nn/60;
Ts = T0 + E/60 + (J - Jm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(F*pi/180) + cos(W*pi/180)*cos(F*pi/180)*cos(C*pi/180));
% 杆长 L = 3 m
L = LArr(i);
% 影长 Ls
Ls = L/tan(Oh);
LsArr(i) = Ls;
end
plot(LArr, LsArr);
%axis([1 12 0 7]);
xlabel('杆长(米)');
ylabel('影长(米)');
title('不同杆长与影长关系曲线');
(六)北京3米杆长9-15点影长随时间变化曲线
完整代码 https://github.com/yan-fanyu/CUMCM-Paper-And-SourceCode
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
A = 39 + 54/60 + 26/3600;
% 经度
D = 116 + 23/60 + 29/3600;
% 时区经度
Dm = 120;
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
ii = 0;
LsArr = [];
X = [];
Larr = [3 4 5 6 7 8 9 10]
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for m = 9:1:14
for nn = 0:10:59
ii = ii +1;
X(ii) = m+nn/60;
T0 = m + nn/60;
Ts = T0 + E/60 + (D - Dm)/15;
% 太阳时角(度)
C = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(A*pi/180)*sin(F*pi/180) + cos(A*pi/180)*cos(F*pi/180)*cos(C*pi/180));
% 杆长 L = 3 m
L = 3;
% 影长 Ls
Ls = L/tan(Oh);
LsArr(ii) = Ls;
end
end
plot(X, LsArr, 'red');
%axis([9 15 22 40]);
xlabel('时间');
ylabel('影子长度');
title('北京3米杆长9-15点影长随时间变化曲线');
二、第二问
(一)求解
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
dB = [0.4555 0.4409 0.4247 0.4136 0.3986 0.3919 0.3777 0.3656 0.3582 0.3481 0.3438 0.3305 0.3264 0.3169 0.3120 0.3069 0.2987 0.2928 0.2876 0.2853 ];
dLs = [1.1496 1.1822 1.2153 1.2491 1.2832 1.3180 1.3534 1.3894 1.4262 1.4634 1.5015 1.5402 1.5799 1.6201 1.6613 1.7033 1.7462 1.7901 1.8350 1.8809 1.9279 ];
% 4月18日是一年的第 108 天
n = 108;
% 太阳赤纬夹角(度)
C = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
Jm = 120;
hour = [14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15];
minutes = [42 45 48 51 54 57 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42];
value1 = 0;
value2 = 0;
min = 100000000;
j = 1;
X = [];
Y = [];
MinArr = ones(12,5);
dFsArr = [];
LsArr = [];
DD = ones(12, 20);
LsArrr = ones(12, 21);
% 杆长
for L = 0:0.1:3
% 纬度
for W = 15:0.1:25
% 经度
for J = 105:0.1:115
% 时间
for i = 1:1:21
T0 = hour(i) + minutes(i)/60;
Ts = T0 + E/60 + (J - Jm)/15;
% 太阳时角(度)
S = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(C.*pi/180) + cos(W*pi/180)*cos(C*pi/180)*cos(S*pi/180));
% 太阳方位角
if(S <0)
Fs = acos( (sin(C*pi/180) - sin(Oh)*sin(W*pi/180)) / (cos(Oh)*cos(W*pi/180)));
FsArr(i) = Fs;
else
Fs = 2*pi - acos( (sin(C*pi/180) - sin(Oh)*sin(W*pi/180)) / (cos(Oh)*cos(W*pi/180)));
FsArr(i) = Fs;
end
if(i >= 2)
value1 = value1 + ( FsArr(i-1) - FsArr(i) - dB(i - 1) )^2;
dFsArr(i-1) = FsArr(i-1) - FsArr(i);
end
% 影长 Ls
Ls = L / tan(Oh);
LsArr(i) = Ls;
value2 = value2 + (Ls - dLs(i))^2;
i = i +1;
end
value = value1/20*value2/21;
%if(value < min)
%min = value;
%MinArr = [L W J]
%end
if (value < 0.0000003)
X(j) = j;
j
Y(j) = value;
LsArrr(j, :) = LsArr;
DD(j, :) = dFsArr*180/pi;
MinArr(j , 1:5) = [j L W J value];
j = j+1;
end
value1 = 0;
value2 = 0;
value = 0;
end
end
end
plot(X, Y,'*');
(二)经度灵敏度
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
%
% 10月22日北京时间9:00-15:00
% 10月22日是一年的第 295 天
n = 295.0;
%地理位置 北纬39度54分26秒,东经116度23分29秒
% 纬度
A = 40;
% 经度
D2 = 116;
D1 = D2 - 2;
D3 = D2 + 2;
% 时区经度
Dm = 120;
% 太阳赤纬夹角(度)
F = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
i = 0;
LsArr1 = [];
LsArr2 = [];
LsArr3 = [];
% T0: m 时 n 分
% 9:00-15:00
% m = [9, 15] n = [0, 59]
for m = 9:1:14
for nn = 0:10:59
i = i +1;
I(i) = m+nn/60;
T0 = m + nn/60;
Ts1 = T0 + E/60 + (D1 - Dm)/15;
Ts2 = T0 + E/60 + (D2 - Dm)/15;
Ts3 = T0 + E/60 + (D3 - Dm)/15;
% 太阳时角(度)
C1 = 15*(Ts1 - 12);
C2 = 15*(Ts2 - 12);
C3 = 15*(Ts3 - 12);
% 太阳高度角
Oh1 = asin(sin(A*pi/180)*sin(F*pi/180) + cos(A*pi/180)*cos(F*pi/180)*cos(C1*pi/180));
Oh2 = asin(sin(A*pi/180)*sin(F*pi/180) + cos(A*pi/180)*cos(F*pi/180)*cos(C2*pi/180));
Oh3 = asin(sin(A*pi/180)*sin(F*pi/180) + cos(A*pi/180)*cos(F*pi/180)*cos(C3*pi/180));
% 杆长 L = 3 m
L = 3;
L3 = 3.1;
% 影长 Ls
Ls1 = L/tan(Oh1);
Ls2 = L/tan(Oh2);
Ls3 = L/tan(Oh3);
LsArr1(i) = Ls1;
LsArr2(i) = Ls2;
LsArr3(i) = Ls3;
end
end
plot(I, LsArr1);
hold on;
plot(I, LsArr2);
hold on;
plot(I, LsArr3);
%axis([9 15 22 40]);
xlabel('时间');
ylabel('影子长度');
title('经度灵敏度分析');
legend('114°E' ,'116°E','118°E');
三、第三问
clc;
clear;
% Φ -> A 纬度
% δ -> F 太阳赤道纬度夹角
% ω -> C 太阳时角
% h -> Oh 太阳高度角
% λ -> D 经度
Fs = [0.918623526 0.944000767 0.966801009 0.994166838 1.012283158 1.046853791 1.071045389 1.097061852 1.127405199 1.159996144 1.191548883 1.225531726 1.254788569 1.290149918 1.331772011 1.362830448 1.399931432 1.446251384 1.481107264 1.522542777];
FsArr = [
0.718578797 0.733382552 0.748746948 0.764690387 0.781231337 0.798388226 0.816179307 0.834622505 0.85373524 0.873534213 0.894035175 0.915252647 0.937199616 0.959887176 0.983324139 1.007516588 1.032467392 1.058175659 1.084636143 1.111838606
0.686999211 0.700565716 0.714630377 0.729209006 0.744317502 0.759971765 0.776187602 0.792980606 0.810366025 0.828358609 0.846972426 0.866220667 0.88611541 0.906667363 0.927885568 0.949777079 0.972346592 0.99559605 1.019524197 1.044126097
0.829657201 0.849114698 0.86934603 0.89037576 0.912227884 0.934925534 0.958490635 0.9829435 1.008302366 1.034582864 1.061797418 1.089954562 1.119058177 1.149106647 1.180091918 1.21199848 1.244802264 1.278469465 1.312955298 1.348202726
0.800063833 0.819138381 0.838945312 0.85950628 0.880842244 0.902973178 0.925917744 0.949692908 0.974313511 0.99979177 1.026136729 1.053353631 1.081443225 1.110401007 1.140216378 1.17087174 1.202341526 1.234591166 1.267576022 1.30124028
0.684818578 0.699406344 0.714514576 0.73015869 0.746353979 0.763115498 0.780457935 0.798395452 0.816941513 0.836108683 0.855908404 0.876350733 0.897444063 0.919194799 0.941607003 0.964682006 0.988417975 1.012809451 1.037846841 1.063515882
0.845459627 0.864429717 0.884177401 0.904729656 0.926113254 0.948354504 0.971478948 0.995510999 1.020473525 1.04638736 1.073270745 1.101138694 1.130002259 1.159867724 1.190735681 1.222600021 1.255446825 1.289253149 1.323985733 1.359599629
0.91707391 0.939303965 0.962461544 0.986576913 1.01167935 1.037796685 1.064954767 1.093176835 1.122482798 1.15288841 1.184404326 1.217035044 1.25077772 1.28562085 1.321542832 1.358510409 1.396477005 1.435380979 1.475143833 1.515668408
0.840665072 0.861372223 0.882886199 0.905230081 0.928425862 0.952494065 0.977453309 1.003319803 1.030106783 1.057823865 1.086476318 1.116064263 1.146581781 1.178015936 1.210345717 1.243540912 1.277560903 1.312353428 1.347853307 1.383981179
0.90001369 0.920963968 0.942795521 0.965539128 0.989225094 1.013882884 1.039540697 1.06622496 1.093959747 1.122766094 1.152661223 1.183657651 1.215762186 1.248974796 1.283287356 1.318682272 1.355130973 1.392592311 1.431010856 1.470315135
0.653099563 0.6656937 0.678732847 0.692230485 0.70620016 0.72065542 0.735609729 0.751076381 0.767068395 0.783598389 0.80067845 0.81831997 0.836533471 0.855328408 0.87471294 0.894693686 0.915275443 0.936460885 0.958250225 0.980640853
0.718157258 0.73435505 0.75114847 0.768555455 0.786593689 0.805280441 0.824632378 0.844665344 0.865394114 0.886832113 0.908991087 0.93188075 0.955508372 0.97987833 1.004991608 1.030845248 1.057431751 1.084738432 1.112746723 1.141431446
0.684103604 0.697333147 0.711054634 0.725284159 0.740037986 0.755332471 0.771183977 0.787608772 0.804622905 0.822242073 0.840481456 0.859355531 0.878877864 0.899060867 0.919915527 0.941451099 0.963674767 0.986591257 1.010202424 1.034506785
0.762787485 0.781173212 0.800234976 0.819991334 0.840460094 0.861658053 0.883600706 0.906301905 0.929773481 0.954024807 0.979062321 1.004888987 1.031503702 1.058900646 1.087068578 1.115990069 1.145640696 1.175988187 1.206991535 1.238600091
0.873502326 0.894638277 0.916616304 0.939461423 0.963197572 0.987847211 1.013430854 1.039966535 1.06746919 1.09594997 1.125415449 1.155866752 1.187298584 1.219698162 1.253044056 1.287304944 1.322438289 1.358388969 1.395087867 1.432450467
0.602821594 0.611138657 0.619778532 0.628752508 0.638072274 0.647749922 0.657797946 0.668229237 0.679057077 0.690295127 0.70195741 0.714058291 0.726612451 0.739634849 0.753140684 0.767145341 0.78166433 0.796713211 0.81230751 0.828462614
0.649813283 0.66206754 0.674761838 0.687909995 0.701525971 0.715623811 0.730217577 0.745321268 0.760948726 0.777113529 0.793828869 0.811107405 0.828961109 0.847401075 0.866437318 0.886078539 0.906331867 0.927202572 0.948693745 0.970805951
0.900200755 0.922219467 0.945134415 0.968972963 0.993761295 1.019523957 1.046283328 1.074059011 1.102867128 1.132719526 1.163622877 1.195577668 1.228577084 1.262605773 1.297638518 1.333638791 1.370557245 1.408330127 1.446877681 1.486102555
0.815632812 0.833718976 0.852537086 0.872112445 0.892470249 0.91363537 0.935632099 0.958483839 0.982212749 1.006839335 1.032381971 1.058856358 1.086274904 1.114646027 1.143973374 1.174254951 1.205482161 1.237638764 1.27069974 1.304630091
0.669612542 0.68134203 0.693526538 0.706182394 0.719326342 0.732975512 0.747147373 0.761859685 0.777130428 0.792977731 0.809419769 0.826474661 0.844160329 0.86249435 0.881493775 0.901174923 0.92155314 0.942642531 0.964455651 0.987003154
0.78115175 0.797871098 0.815257752 0.833334926 0.852125898 0.871653838 0.89194162 0.913011589 0.934885293 0.95758317 0.981124184 1.005525411 1.030801563 1.056964448 1.084022362 1.111979412 1.140834755 1.170581771 1.20120715 1.23268991
0.622943074 0.634169109 0.645779751 0.657786238 0.670199895 0.683032089 0.696294177 0.709997441 0.724153019 0.738771821 0.753864436 0.769441025 0.7855112 0.802083892 0.819167194 0.836768194 0.854892787 0.873545469 0.892729102 0.912444668
0.724107044 0.740687388 0.757864825 0.775656166 0.794077793 0.813145471 0.83287414 0.853277681 0.874368637 0.896157909 0.918654414 0.941864694 0.965792488 0.990438263 1.01579869 1.041866082 1.068627785 1.096065526 1.124154724 1.152863773
0.657779818 0.670204777 0.683068288 0.696383534 0.71016376 0.724422211 0.739172055 0.754426298 0.770197677 0.786498549 0.803340756 0.820735473 0.838693037 0.857222758 0.876332702 0.896029448 0.916317827 0.937200628 0.958678271 0.980748465
0.911444163 0.934109364 0.957683718 0.982192921 1.00766109 1.034110246 1.061559731 1.090025526 1.119519485 1.150048469 1.181613369 1.214208032 1.24781807 1.282419575 1.31797773 1.354445341 1.391761313 1.429849094 1.468615126 1.507947365
0.994205449 1.019944214 1.046761428 1.074687802 1.103751606 1.133977901 1.165387659 1.197996736 1.231814719 1.26684362 1.303076408 1.340495399 1.379070483 1.418757228 1.459494853 1.501204133 1.543785264 1.587115763 1.631048488 1.675409872
0.680454101 0.69330393 0.706636804 0.720468939 0.734816793 0.749696997 0.765126284 0.781121401 0.797699001 0.81487552 0.832667036 0.851089103 0.870156558 0.889883305 0.910282067 0.931364105 0.953138901 0.975613804 0.998793638 1.022680265
0.623377741 0.633561082 0.644108906 0.65503261 0.666343814 0.678054333 0.690176141 0.702721334 0.715702084 0.729130586 0.743018988 0.757379324 0.772223427 0.787562829 0.803408651 0.81977148 0.83666122 0.854086937 0.872056676 0.890577259
0.619106174 0.628374964 0.637987215 0.647954192 0.658287466 0.668998902 0.680100641 0.691605078 0.703524836 0.71587273 0.728661732 0.741904916 0.75561541 0.769806321 0.784490665 0.799681271 0.815390682 0.831631037 0.848413933 0.865750272
0.656366568 0.668225805 0.680512317 0.693239498 0.706420905 0.720070201 0.734201099 0.74882729 0.763962357 0.779619681 0.795812328 0.812552919 0.82985349 0.84772532 0.866178745 0.885222951 0.904865734 0.925113237 0.945969664 0.967436955
0.645278939 0.656893449 0.668936323 0.681421742 0.694364145 0.707778193 0.721678716 0.736080652 0.750998977 0.766448619 0.78244436 0.799000724 0.816131838 0.833851288 0.85217194 0.871105742 0.890663506 0.910854653 0.93168693 0.953166102
0.599744102 0.607737123 0.616020928 0.624604446 0.633496852 0.642707559 0.65224621 0.662122663 0.672346978 0.682929395 0.69388031 0.705210247 0.716929825 0.729049717 0.741580603 0.754533117 0.767917785 0.781744953 0.796024707 0.810766777
0.540901189 0.556992391 0.573604723 0.590752912 0.608451306 0.626713734 0.645553332 0.664982355 0.685011957 0.705651951 0.726910532 0.748793977 0.771306301 0.794448893 0.8182201 0.842614794 0.867623886 0.893233821 0.919426032 0.946176376
0.782384653 0.799469172 0.817235121 0.835705997 0.854905296 0.874856334 0.895582034 0.917104679 0.939445619 0.962624932 0.98666104 1.011570254 1.037366271 1.064059592 1.091656879 1.120160229 1.149566372 1.179865797 1.211041787 1.243069401
0.682435409 0.69504511 0.708129251 0.72170377 0.735784858 0.750388897 0.765532397 0.781231903 0.797503908 0.814364729 0.831830379 0.849916407 0.868637723 0.888008391 0.908041393 0.92874837 0.950139318 0.972222258 0.995002857 1.018484021
0.54891544 0.565044154 0.581698815 0.598894345 0.616645296 0.634965694 0.653868879 0.673367302 0.693472311 0.7141939 0.735540437 0.757518347 0.780131779 0.80338222 0.827268086 0.851784269 0.876921655 0.902666598 0.929000375 0.955898601
0.621221652 0.632154902 0.643469017 0.65517548 0.667285914 0.679812047 0.692765664 0.70615855 0.720002432 0.734308897 0.749089319 0.764354751 0.780115825 0.796382621 0.81316453 0.830470097 0.848306842 0.86668107 0.885597646 0.905059765
0.594009995 0.613501606 0.633669246 0.65453172 0.676106947 0.698411672 0.721461148 0.745268766 0.769845641 0.79520014 0.821337368 0.848258583 0.875960558 0.904434888 0.933667234 0.963636512 0.994314042 1.025662645 1.057635724 1.090176335
0.869864841 0.891279111 0.913553507 0.936714043 0.960785653 0.98579178 1.011753887 1.038690905 1.06661859 1.095548802 1.125488686 1.156439754 1.188396871 1.221347132 1.255268647 1.290129233 1.325885023 1.362479021 1.399839617 1.437879114
0.669839833 0.68157815 0.693771805 0.706437134 0.719590891 0.733250211 0.74743257 0.762155733 0.777437685 0.793296554 0.809750518 0.826817691 0.844515992 0.862862988 0.881875719 0.901570485 0.921962612 0.943066177 0.964893701 0.987455796
0.718217717 0.734921591 0.752227839 0.770153565 0.788715436 0.807929504 0.827810989 0.848374038 0.869631446 0.891594346 0.914271854 0.937670676 0.961794671 0.986644366 1.012216426 1.038503077 1.065491485 1.093163085 1.12149288 1.150448702
0.639712589 0.653487103 0.667725285 0.682439944 0.697643728 0.713349024 0.729567847 0.746311712 0.763591494 0.78141726 0.799798085 0.818741853 0.83825502 0.85834237 0.879006726 0.900248652 0.922066114 0.944454124 0.967404344 0.990904683
0.635367302 0.645626736 0.656281356 0.667345214 0.678832784 0.690758951 0.703138984 0.715988514 0.7293235 0.743160184 0.757515041 0.772404712 0.787845933 0.803855441 0.820449865 0.837645607 0.855458693 0.873904605 0.892998087 0.912752928
0.72270107 0.737585034 0.753027678 0.769046902 0.785660616 0.802886621 0.820742473 0.839245323 0.858411732 0.878257456 0.898797202 0.92004435 0.942010631 0.96470578 0.988137128 1.012309161 1.03722303 1.062876006 1.089260893 1.116365388
0.61929144 0.629110217 0.639286864 0.649832912 0.660760165 0.672080678 0.683806733 0.695950804 0.708525527 0.721543647 0.735017972 0.748961305 0.763386376 0.778305757 0.793731764 0.809676347 0.826150963 0.843166434 0.860732783 0.878859052
0.767147701 0.785343615 0.804207171 0.823756587 0.844009347 0.864981952 0.886689635 0.909146025 0.932362788 0.956349197 0.981111672 1.006653256 1.03297304 1.060065536 1.087919985 1.116519627 1.145840909 1.175852656 1.206515215 1.237779568
0.647332464 0.660055284 0.673228057 0.686864538 0.700978548 0.715583914 0.730694381 0.746323525 0.762484643 0.779190627 0.796453826 0.814285883 0.832697553 0.851698496 0.871297053 0.89149998 0.91231217 0.933736337 0.955772669 0.978418454
0.848430885 0.869611824 0.89160371 0.914427948 0.938104547 0.962651701 0.988085315 1.014418464 1.04166078 1.06981777 1.098890045 1.12887248 1.159753285 1.191513005 1.224123441 1.257546513 1.291733073 1.32662169 1.362137441 1.398190726
0.619077824 0.63071947 0.642752481 0.655187964 0.668037053 0.681310857 0.695020396 0.70917653 0.723789876 0.738870715 0.754428886 0.770473665 0.787013632 0.80405652 0.821609044 0.839676722 0.858263661 0.877372338 0.89700335 0.917155146
0.869450507 0.890848062 0.91310522 0.936248014 0.960301403 0.985288864 1.011231904 1.038149508 1.066057504 1.094967835 1.124887749 1.155818878 1.187756229 1.220687061 1.254589674 1.289432103 1.325170724 1.361748814 1.399095067 1.437122118
0.558204627 0.574385503 0.591095873 0.608350659 0.626164393 0.644551068 0.66352396 0.683095435 0.703276725 0.724077671 0.745506449 0.76756925 0.790269934 0.813609646 0.837586395 0.862194603 0.887424603 0.913262121 0.939687717 0.966676198
0.617130142 0.636876395 0.657306072 0.678437323 0.700287262 0.722871673 0.746204658 0.770298254 0.795161995 0.820802416 0.847222511 0.87442113 0.902392313 0.931124577 0.960600137 0.990794083 1.021673514 1.053196635 1.085311843 1.11795681
0.991712772 1.017395203 1.044158165 1.072033001 1.101048702 1.131231152 1.162602243 1.19517887 1.228971776 1.263984253 1.300210681 1.337634912 1.376228504 1.415948805 1.456736923 1.498515604 1.541187071 1.584630887 1.628701919 1.673228517
0.687432399 0.700721466 0.714500682 0.728785764 0.743592555 0.758936947 0.774834784 0.791301766 0.808353314 0.826004433 0.844269547 0.863162305 0.882695369 0.902880172 0.923726635 0.945242868 0.967434818 0.990305895 1.013856544 1.038083792
0.71467473 0.728494906 0.742846747 0.75774851 0.773218687 0.789275931 0.805938954 0.823226416 0.841156784 0.859748177 0.879018178 0.89898362 0.91966034 0.941062895 0.963204242 0.986095373 1.009744911 1.034158646 1.059339038 1.085284648
0.6440843 0.657493477 0.67136348 0.685707601 0.700539062 0.715870928 0.731716009 0.748086745 0.764995071 0.782452271 0.80046881 0.819054139 0.838216487 0.857962621 0.878297581 0.899224392 0.920743742 0.942853636 0.965549017 0.98882136
0.608155435 0.616609826 0.625388981 0.634504076 0.643966668 0.653788687 0.663982443 0.674560606 0.685536204 0.696922605 0.708733495 0.720982854 0.733684925 0.746854171 0.760505229 0.77465285 0.789311835 0.804496948 0.820222826 0.836503867
0.55692598 0.57455814 0.59278919 0.611636827 0.631118274 0.651250073 0.672047868 0.693526143 0.715697927 0.738574468 0.762164857 0.786475608 0.811510199 0.837268561 0.863746512 0.890935154 0.918820214 0.947381341 0.976591371 1.006415552
0.599123862 0.607644316 0.616468847 0.625606669 0.635067221 0.644860153 0.654995311 0.665482721 0.676332562 0.68755514 0.699160855 0.711160163 0.72356353 0.736381383 0.749624047 0.763301677 0.777424182 0.792001133 0.807041665 0.822554364
0.749243173 0.768601957 0.788657615 0.809427831 0.830929219 0.853177005 0.87618469 0.899963644 0.924522672 0.94986751 0.976000279 1.002918872 1.03061629 1.059079921 1.08829076 1.118222587 1.1488411 1.180103019 1.211955178 1.24433362
0.618824319 0.62835807 0.638242524 0.648489106 0.659109533 0.670115797 0.681520146 0.693335059 0.705573212 0.71824744 0.73137069 0.74495597 0.759016283 0.77356455 0.788613528 0.804175708 0.820263202 0.836887611 0.854059879 0.871790124
0.754952577 0.774186999 0.794113333 0.814749036 0.836110505 0.858212766 0.881069141 0.90469085 0.929086582 0.954262003 0.980219216 1.006956159 1.034465956 1.062736206 1.091748218 1.121476203 1.151886424 1.182936315 1.214573587 1.246735343
0.580208664 0.587385436 0.594856238 0.602631951 0.610723924 0.619143988 0.627904472 0.63701821 0.646498559 0.656359401 0.666615158 0.677280792 0.688371808 0.699904252 0.711894707 0.724360282 0.737318591 0.750787732 0.764786253 0.779333111
0.598828372 0.607605213 0.616691637 0.626096916 0.635830531 0.645902152 0.656321624 0.667098941 0.678244219 0.689767667 0.701679544 0.713990122 0.726709628 0.739848191 0.753415775 0.767422097 0.781876547 0.796788087 0.812165143 0.828015479
0.634959959 0.645491185 0.656426344 0.667779747 0.679566117 0.69180057 0.704498593 0.71767601 0.731348945 0.74553377 0.760247048 0.775505459 0.791325716 0.807724465 0.824718164 0.842322947 0.860554461 0.879427687 0.898956724 0.91915455
0.764273683 0.780977702 0.798314263 0.816302893 0.834962864 0.854313011 0.874371522 0.895155695 0.91668166 0.938964058 0.962015682 0.985847061 1.010466005 1.03587709 1.062081087 1.089074337 1.11684807 1.145387662 1.174671844 1.204671864
0.537005461 0.551603784 0.566662879 0.582195623 0.598214659 0.614732279 0.631760307 0.64930996 0.667391685 0.686014985 0.705188222 0.724918386 0.74521086 0.766069137 0.787494527 0.809485832 0.832038987 0.855146682 0.878797954 0.902977756
0.722573362 0.737452521 0.752890203 0.768904309 0.785512749 0.802733324 0.820583594 0.839080715 0.858241254 0.878080974 0.898614593 0.919855503 0.941815452 0.964504193 0.987929081 1.012094629 1.037002019 1.062648557 1.089027091 1.116125365
0.903358781 0.924363784 0.946246334 0.969036441 0.992763546 1.017456145 1.04314136 1.069844417 1.097588063 1.126391873 1.156271464 1.187237608 1.219295215 1.252442218 1.286668314 1.321953603 1.358267104 1.395565171 1.433789833 1.472867072
0.52471407 0.540646665 0.557102218 0.574096427 0.591644736 0.609762192 0.628463296 0.647761816 0.667670585 0.68820127 0.709364107 0.731167606 0.753618228 0.776720017 0.8004742 0.824878746 0.849927892 0.875611623 0.901915123 0.928818187
0.738216613 0.752740489 0.767841684 0.78354109 0.799859931 0.816819677 0.834441934 0.852748313 0.871760275 0.891498947 0.911984905 0.933237923 0.955276678 0.978118419 1.001778576 1.026270326 1.051604097 1.077787011 1.104822266 1.132708445
0.727947641 0.74324618 0.759111219 0.775560177 0.792610355 0.810278805 0.828582177 0.847536534 0.867157148 0.887458262 0.908452823 0.930152171 0.9525657 0.975700472 0.999560787 1.024147712 1.049458562 1.075486331 1.102219082 1.12963929
0.801949296 0.818987352 0.836724157 0.85518531 0.874396606 0.894383874 0.915172776 0.936788574 0.959255847 0.982598162 1.006837695 1.031994785 1.058087421 1.085130662 1.113135975 1.142110484 1.172056139 1.202968786 1.234837151 1.26764173
0.602895061 0.612540658 0.622509254 0.632809824 0.643451445 0.654443272 0.665794499 0.677514325 0.689611908 0.702096317 0.714976471 0.728261078 0.741958558 0.756076961 0.770623874 0.785606317 0.801030628 0.816902333 0.833226007 0.850005117
0.787679545 0.805526389 0.824077736 0.843356863 0.863386833 0.884190276 0.905789141 0.928204394 0.951455681 0.97556093 1.0005359 1.026393667 1.053144041 1.080792916 1.109341542 1.13878572 1.169114922 1.200311335 1.232348837 1.265191903
0.889590505 0.910994068 0.933281137 0.956480548 0.980620315 1.00572723 1.031826388 1.058940638 1.087089945 1.116290664 1.146554704 1.177888597 1.210292444 1.243758749 1.278271138 1.313802964 1.350315817 1.387757941 1.426062597 1.465146402
0.67511432 0.688132594 0.70164298 0.715662252 0.730207443 0.745295784 0.76094463 0.777171362 0.793993286 0.811427503 0.82949076 0.848199282 0.867568572 0.887613185 0.908346467 0.929780269 0.95192461 0.974787311 0.998373579 1.022685553
0.76960631 0.785356263 0.801742766 0.818789078 0.836518747 0.854955488 0.874123037 0.894044969 0.914744494 0.936244206 0.958565797 0.981729714 1.005754779 1.030657737 1.056452746 1.083150806 1.110759107 1.139280302 1.168711709 1.199044423
0.786177323 0.80301502 0.820519161 0.838712384 0.857617297 0.877256316 0.897651458 0.918824097 0.940794692 0.963582456 0.987204988 1.011677846 1.037014058 1.063223577 1.090312662 1.118283195 1.147131922 1.176849617 1.20742018 1.238819666
0.537061665 0.551661764 0.566722686 0.582257308 0.598278269 0.614797862 0.631827909 0.649379622 0.667463447 0.686088883 0.705264284 0.724996639 0.745291319 0.766151812 0.78757942 0.809572932 0.832128271 0.855238115 0.878891487 0.90307332
0.781140457 0.798175226 0.81588968 0.834307313 0.853451624 0.873345951 0.894013254 0.915475873 0.937755237 0.960871533 0.984843321 1.009687085 1.035416735 1.062043032 1.089572948 1.118008944 1.147348181 1.177581642 1.208693183 1.240658509
0.75752161 0.774057025 0.791225304 0.809046674 0.827541204 0.846728644 0.866628219 0.887258403 0.908636648 0.930779081 0.953700155 0.977412246 1.001925213 1.027245888 1.05337752 1.080319156 1.10806496 1.136603476 1.165916825 1.195979861
0.708072671 0.725546187 0.743635729 0.762357654 0.781727658 0.801760554 0.82247003 0.843868362 0.8659661 0.88877171 0.912291178 0.936527568 0.961480533 0.987145786 1.013514518 1.040572779 1.068300809 1.096672343 1.125653877 1.155203922
0.591932269 0.611390918 0.631527529 0.652361291 0.673910545 0.696192508 0.719222952 0.74301584 0.767582914 0.792933226 0.819072624 0.846003169 0.873722501 0.902223137 0.931491717 0.961508191 0.992244951 1.023665931 1.055725665 1.088368345
0.604877918 0.624484478 0.644771223 0.665756746 0.687458693 0.709893473 0.733075926 0.757018943 0.781733044 0.807225898 0.833501787 0.860561022 0.888399287 0.917006933 0.946368214 0.976460469 1.007253253 1.038707444 1.070774312 1.103394593
0.825920594 0.844607576 0.864040615 0.884244167 0.905242336 0.927058619 0.949715604 0.973234627 0.997635363 1.022935363 1.049149525 1.076289491 1.104362967 1.133372968 1.16331697 1.194185988 1.225963561 1.258624665 1.292134549 1.326447523
0.57593857 0.593798201 0.612253467 0.631320573 0.651015051 0.671351552 0.692343601 0.714003323 0.736341128 0.759365368 0.783081941 0.807493866 0.832600801 0.85839853 0.88487839 0.912026673 0.939823971 0.968244496 0.997255371 1.026815901
0.688982267 0.703900665 0.719340748 0.735317105 0.75184407 0.768935601 0.786605125 0.804865373 0.823728191 0.843204317 0.863303142 0.884032435 0.905398039 0.927403537 0.950049878 0.973334973 0.997253258 1.021795215 1.046946866 1.072689238
0.706396256 0.724041428 0.742301617 0.761192578 0.78072931 0.800925838 0.821794951 0.843347913 0.865594138 0.888540821 0.912192533 0.936550772 0.961613468 0.987374444 1.013822832 1.040942454 1.068711154 1.097100105 1.126073092 1.155585781
0.891551813 0.91482588 0.938998979 0.964092838 0.990127026 1.017118386 1.045080392 1.074022413 1.103948895 1.134858441 1.166742806 1.199585786 1.233362022 1.268035725 1.303559325 1.339872081 1.376898674 1.41454781 1.452710906 1.49126089
0.753335773 0.768866464 0.78500006 0.801756869 0.819157267 0.837221579 0.855969918 0.875422007 0.895596966 0.916513071 0.938187467 0.960635847 0.98387208 1.007907797 1.032751914 1.058410109 1.084884236 1.112171675 1.140264628 1.169149347
0.691765944 0.705440469 0.719612562 0.73429763 0.749511112 0.765268392 0.781584691 0.798474952 0.815953693 0.834034853 0.852731599 0.872056125 0.892019412 0.912630959 0.933898488 0.955827609 0.978421456 1.001680275 1.025600988 1.050176711
0.714031566 0.7313905 0.749361205 0.767959823 0.787201838 0.807101861 0.827673389 0.848928526 0.870877669 0.893529162 0.916888901 0.940959903 0.965741825 0.991230442 1.017417081 1.044288005 1.071823767 1.099998515 1.128779283 1.15812525
0.640350808 0.658562758 0.677392046 0.696854474 0.716965004 0.737737526 0.759184582 0.781317059 0.804143846 0.827671449 0.851903563 0.876840597 0.902479159 0.928811494 0.955824876 0.983500959 1.011815092 1.040735606 1.070223075 1.100229574
0.571227989 0.589028048 0.607429117 0.62644826 0.64610196 0.66640591 0.687374774 0.709021924 0.731359125 0.754396197 0.778140623 0.802597124 0.827767179 0.853648504 0.880234482 0.907513545 0.935468515 0.964075901 0.993305164 1.023117964
];
% 10月22日北京时间9:00-15:00
% 285 1.4 -32 69
NLWJ = [285 1.4 -32 69
65 1.3 -31 74
114 1.7 34 77
245 1.6 30 77
85 1.3 27 74
26 1.8 -39 80
199 2 40 81
58 1.7 -31 82
175 2 42 79
271 1.2 -29 67
257 1.4 27 73
283 1.3 -32 67
76 1.5 -26 79
226 1.8 35 80
42 1.1 -38 65
92 1.2 30 70
34 1.9 -37 83
308 1.7 -37 72
298 1.3 -36 64
120 1.6 36 74
268 1.1 -29 65
78 1.4 -26 77
71 1.2 -30 72
306 1.9 -36 76
186 2.2 41 83
104 1.3 33 70
281 1.1 -33 62
235 1.1 36 64
247 1.2 32 68
63 1.2 -32 71
53 1 -37 64
192 1.3 -4 75
299 1.6 -35 71
55 1.3 -34 73
146 1.3 -5 73
89 1.1 30 68
364 1.5 1 78
229 1.8 34 80
229 1.3 36 69
264 1.4 -25 73
71 1.2 23 74
114 1.2 36 65
102 1.4 32 73
285 1.1 -34 61
271 1.5 -27 74
76 1.2 -28 72
244 1.7 30 79
265 1.1 27 66
298 1.8 -34 75
141 1.3 -6 73
197 1.5 -3 79
3 2.2 -41 83
100 1.3 32 71
232 1.4 35 72
77 1.2 25 73
119 1.1 38 61
159 1.4 -2 75
60 1 -35 65
272 1.5 21 75
106 1.1 35 64
87 1.5 -22 79
28 1.1 -40 62
246 1 34 62
293 1.2 -35 62
241 1.5 32 75
137 1.2 -8 71
60 1.4 -32 76
361 2 -42 79
158 1.3 -3 73
305 1.5 -37 68
246 1.4 31 73
135 1.7 39 74
257 1 31 63
292 1.6 -33 72
133 1.9 38 78
243 1.3 32 70
216 1.6 38 75
225 1.6 36 76
25 1.2 8 75
228 1.6 35 76
58 1.5 -32 78
274 1.4 21 73
162 1.5 -1 77
336 1.5 2 75
121 1.7 36 76
191 1.4 -3 77
264 1.3 -26 71
277 1.4 20 73
60 1.8 -30 84
114 1.5 35 73
279 1.3 -31 68
89 1.4 -22 77
39 1.4 10 80
152 1.4 -3 75
234 1.3 -15 75
287 1.3 -33 66
209 1.1 40 60
274 1.3 22 71
300 1.7 -35 73
102 1 35 62
97 1.1 -22 70
324 1.8 -40 73
100 1.1 -21 70
260 1.2 -25 69
26 1.3 7 77
102 1.8 30 81
224 1.7 36 78
358 1.6 0 79
260 1.3 27 71
330 1.4 4 73
126 1.7 37 75
42 1.2 13 76
143 1.5 -4 77
334 1.3 4 71
246 1.1 33 65
78 1 -30 67
59 1.6 -31 80
134 1.5 -6 77
];
nArr = NLWJ(:, 1);
LArr = NLWJ(:, 2);
WArr = NLWJ(:, 3);
JArr = NLWJ(:, 4);
% 24 7
ii = 24;
Fsi = FsArr(ii, :);
n = 199;
L = 2;
W = 40.1;
J = 81.1;
hour = [12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13];
minutes = [41 44 47 50 53 56 59 2 5 8 11 14 17 20 23 26 29 32 35 38 41];
dLs = [1.247256205 1.22279459 1.198921486 1.175428964 1.152439573 1.12991747 1.10783548 1.086254206 1.065081072 1.044446265 1.024264126 1.004640314 0.985490908 0.966790494 0.948584735 0.930927881 0.91375175 0.897109051 0.880973762 0.865492259 0.850504468];
% 时区经度
Jm = 120;
% 太阳赤纬夹角(度)
C = 23.45*sin(2*pi*(284+n)/365);
% 太阳时
B = 2*pi*(n -81)/364;
E = 9.87*sin(2*B) - 7.53*cos(B) - 1.5*sin(B);
LsArr = [];
X = [];
for i=1:1:21
T0 = hour(i) + minutes(i)/60;
Ts = T0 + E/60 + (J - Jm)/15;
X(i) = T0;
% 太阳时角(度)
S = 15*(Ts - 12);
% 太阳高度角
Oh = asin(sin(W*pi/180)*sin(C*pi/180) + cos(W*pi/180)*cos(C*pi/180)*cos(S*pi/180));
% 影长 Ls
Ls = L/tan(Oh);
LsArr(i) = Ls;
end
plot(X(:, 1:20), Fs, '.');
hold on;
plot(X(:, 1:20), Fsi, 'blue');
xlabel('时间');
ylabel('方位角之差(°)');
title('7月18日 杆长2米 (40.1°N,81.1°E)');
legend('实际值', '预测值')
四 word论文和源代码资源
https://download.csdn.net/download/qq_35500719/89408769?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171860229216800225591070%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fdownload.%2522%257D&request_id=171860229216800225591070&biz_id=1&utm_medium=distribute.pc_search_result.none-task-download-2downloadfirst_rank_ecpm_v1~rank_v31_ecpm-3-89408769-null-null.269v2control&utm_term=%E5%A4%AA%E9%98%B3&spm=1018.2226.3001.4451.3