mnist 简单使用

原文链接: mnist 简单使用

上一篇: python 解方程

下一篇: inception模型下载

mnist 手写数字的数据集

import os
import tensorflow as tf
from  tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from PIL import Image

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# 载入数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

print('训练集数据总数', mnist.train.num_examples)
print('测试集数据总数', mnist.test.num_examples)

print('训练数据集形式', mnist.train.images.shape, mnist.train.labels.shape)

# 获得下一批次的数据和标签,返回多重矩阵的形式
'''
[[ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]
 [ 0.  0.  0. ...,  0.  0.  0.]]
[[ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]]

batch_xs, batch_ys = mnist.train.next_batch(3)
print(batch_xs)
print(batch_ys)
'''

''' 前十个数据标签
[2]
[0]
[2]
[5]
[0]
[1]
[1]
[8]
[7]
[4]
'''

# 保存图片数据
for i in range(100):
    image, label = mnist.train.next_batch(1);
    data = np.reshape(image, [28, 28])
    #矩阵中的元素都是 像素点灰度/255 的一个小数,需要乘以255 转化为灰度值
    data = data * 255
    img = Image.fromarray(data.astype(np.uint8), 'L')
    img_num = np.argmax(label, 1)
    img.save('mnist/img_%d_%d.bmp' % (i, img_num))

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
训练集数据总数 55000
测试集数据总数 10000
训练数据集形式 (55000, 784) (55000, 10)

会保存为这样的小图片

214705_p4yW_2856757.png

每次获取的图片都是随机的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值