【Python】【机器学习】混淆矩阵的各项指标计算

混淆矩阵的基本概念

在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是错误矩阵。它是一种特定的矩阵用来呈现算法性能的可视化效果,通常是监督学习(非监督学习,通常用匹配矩阵:matching matrix)。其每一列代表预测值,每一行代表的是实际的类别。这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class)。

假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结。假设总共有 27 只动物:8只猫, 6条狗, 13只兔子。结果的混淆矩阵如下图:

img

混淆矩阵的结构

混淆矩阵通常以二维表的形式展示,对于二分类问题,结构如下:

预测正类 (Positive) 预测负类 (Negative)
实际正类 (Positive) TP FN
实际负类 (Negative) FP TN

这里的正负也就是预测正确和预测错误。

基本用语

img

Condition Positive § = 测试数据中正例的数量。此处是猫=5。

Condition Negatives (N) = 测试数据中反例的数量。此处是非猫=8。

True Positive (TP) = **是正例,且很幸运我也猜它是正例的数量。**此处4表示有4张图片是猫,且我也猜它是猫。TP越大越好,因为表示我猜对了。这个时候如果你质问我猫不是5张图片吗?那么别急,重新看看TP的定义。然后再看看FN的定义。

False Negative (FN) = **明明是正例,但很不幸,我猜它是反例的数量。**此处1表示有1张图片明明是猫,但我猜它非猫。**FN越小越好,因为FN说明我猜错了。**现在来看5张猫图片是不是全了。其中4张猫我猜是猫,1张猫我猜非猫。

True Negative (TN) = **是反例,且很幸运我也猜它是反例的数量。**此处5表示有5张图片是非猫,且我也猜它是非猫。TN越大越好,因为表示我猜对了。

False Positive (FP) = **明明是反例,但很不幸我猜它是正例的数量。**此处3表示有3张图片是非猫,但我猜它是猫。FP越小越好,因为FP说明我猜错了。

我感觉这么记这些缩写比较好:第一个True or False是指预测对不对,也就是说反斜对角线上开头都是True,正斜对角线上开头都是False。然后第二个Positive or Negative与列索引保持一致即可。

多分类问题的扩展

对于多分类问题,上述指标可以扩展为对每个类别分别计算,然后通过宏平均(macro-average)或微平均(micro-average)等方式综合得到整体指标:

  • 宏平均(Macro-average):对每个类别计算指标,然后取平均值,不考虑类别的样本数量。
  • 微平均(Micro-average):将所有类别的TP、FP、TN、FN累加后计算指标,考虑了类别的样本数量。

img

计算评估标准

预测正类 (Positive) 预测负类 (Negative)
实际正类 (Positive) TP FN
实际负类 (Negative) FP TN

对着表格看一下以下公式:

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值