COMSOL 固体力学 第一主应力、第二主应力、第三主应力、径向应力、环向应力、切向应力 截面一维曲线

本文详细介绍了在COMSOL中如何计算和绘制第一、第二、第三主应力以及径向、环向和切向应力的一维曲线。通过三维图截线,添加一维绘图和特定表达式来展示应力分布。同时,解释了应力张量和主应力的概念,提供了相关知识点和参考书籍。
摘要由CSDN通过智能技术生成

绘图步骤

1.在三维图上,沿需要的方向画三维截线

2.添加一维绘图,数据集选之前画的截线

3.添加表达式

函数表达式

第一主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp1

第二主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp2

第三主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp3

应力张量中,局部坐标系的表达式,会受选择截线方向的影响,以下仅供参考,不代表实际。

径向应力(和选取轴同向):组件-固体力学-应力-应力张量-局部坐标系-11分量
表达式:solid.sl11

环向应力(和选取轴平面内垂直):组件-固体力学-应力-应力张量-局部坐标系-22分量
表达式:solid.sl22

切向应力(和选取轴纵向垂直):组件-固体力学-应力-应力张量-局部坐标系-23分量
表达式:solid.sl23

相关知识点

应力张量

一点处互相垂直的三个微分面上有9 个应力分量。这 9 个应力分量的整体组成了一个二阶张量,称为应力张量。记为
σ i j = [ σ x τ x y τ x z τ y x σ y τ y z τ z x τ z y σ z ] \sigma_{i j}=\left[\begin{array}{ccc} \sigma_{x} & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y} & \tau_{y z} \\ \tau_{z x} & \tau_{z y}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值