COMSOL 固体力学 第一主应力、第二主应力、第三主应力、径向应力、环向应力、切向应力 截面一维曲线

本文详细介绍了在COMSOL中如何计算和绘制第一、第二、第三主应力以及径向、环向和切向应力的一维曲线。通过三维图截线,添加一维绘图和特定表达式来展示应力分布。同时,解释了应力张量和主应力的概念,提供了相关知识点和参考书籍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

绘图步骤

1.在三维图上,沿需要的方向画三维截线

2.添加一维绘图,数据集选之前画的截线

3.添加表达式

函数表达式

第一主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp1

第二主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp2

第三主应力:组件-固体力学-应力-主应力-第一主应力
表达式:solid.sp3

应力张量中,局部坐标系的表达式,会受选择截线方向的影响,以下仅供参考,不代表实际。

径向应力(和选取轴同向):组件-固体力学-应力-应力张量-局部坐标系-11分量
表达式:solid.sl11

环向应力(和选取轴平面内垂直):组件-固体力学-应力-应力张量-局部坐标系-22分量
表达式:solid.sl22

切向应力(和选取轴纵向垂直):组件-固体力学-应力-应力张量-局部坐标系-23分量
表达式:solid.sl23

相关知识点

应力张量

一点处互相垂直的三个微分面上有9 个应力分量。这 9 个应力分量的整体组成了一个二阶张量,称为应力张量。记为
σ i j = [ σ x τ x y τ x z τ y x σ y τ y z τ z x τ z y σ z ] \sigma_{i j}=\left[\begin{array}{ccc} \sigma_{x} & \tau_{x y} & \tau_{x z} \\ \tau_{y x} & \sigma_{y} & \tau_{y z} \\ \tau_{z x} & \tau_{z y}

### Comsol 中计算和显示第一主应力的方法 在 COMSOL Multiphysics 软件中,计算和显示第一主应力是一个常见的需求,尤其是在结构力学分析中。以下是具体的操作方法: #### 设置模型并定义材料属性 确保所使用的材料参数准确无误地输入到 COMSOL 的材料库中。对于特定的应用场景,比如掺硼金刚石薄膜的压阻传感器仿真,需要特别注意材料的机械、电学以及压阻特性[^3]。 #### 定义几何形状与网格划分 创建或导入所需的几何模型,并对其进行合理的网格划分。良好的网格质量有助于提高数值解的精度。 #### 应力应变分析的选择 选择适合当前问题类型的物理场接口来进行应力应变分析。通常情况下,稳态研究适用于大多数静态加载情况下的应力分析[^2]。 #### 添加边界条件和其他必要设定 施加合适的边界条件来反映实际工程中的约束状况;同时也要考虑其他可能影响结果的因素,如接触面处理等。 #### 后处理阶段获取第一主应力 完成上述准备工作后,在求解完成后进入后处理器(Postprocessing),这里可以通过表达式编辑器(Expression Builder)自定义输出变量。为了获得第一主应力 (σ₁), 可以按照如下方式操作: 1. **使用内置函数**: 在“全局常量”(Global Definitions) 或者 “组件>定义>(Component)>Definitions” 下新建一个辅助名称(Auxiliary Name),命名为 `sigma_1` ,并将它的定义设为 `solid.mises_stress()` 。然而这实际上给出的是米塞斯屈服准则对应的当量应力而非真正意义上的最大主应力。 2. **手动编写公式** : 更推荐的做法是在 Post Processing -> Data Set -> Derived Values 里直接键入以下 MATLAB 风格语法形式的第一主应力表达式: ```matlab eigenvalue({lambda}, {stress_xx, stress_yy, stress_zz}) ``` 其中 `{lambda}` 表示特征值向量,即三个主应力分量组成的数组;而后面的矩阵代表了 xx, yy 和 zz 方向上正交坐标系内的法向应力张量元素。此命令将会返回按降序排列后的第一个元素作为 σ₁ 值。 另外一种更简便的方式是利用 COMSOL 提供的数据集(Data Sets) 功能,在 Results Library 中搜索 "Principal Stresses" 并将其添加至项目内,随后便可以直接查看各个节点处的最大/最小主应力分布云图。 最后提醒一点,由于焊接过程中存在复杂的温度场变化及塑性变形等因素的影响,单纯依靠稳态分析难以全面捕捉整个工艺流程中的瞬态行为特点[^1]。因此针对复杂工况建议采用瞬态热-机耦合或多物理场联合求解策略进一步深入探讨。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值