tf.nn.sigmoid_cross_entropy_with_logits()函数示例

import tensorflow as tf
labels = [[0.2,0.3,0.5],
          [0.1,0.6,0.3]]
#原始logit
logits = [[2,0.5,1],
          [0.1,1,3]]
weight=[[1],
        [2]]
 
#输入应为原始logits
result1 = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)

#softmax+交叉熵定义计算
logits_scaled = tf.nn.softmax(logits)  #经过softmax的logits
result2 = -tf.reduce_sum(labels*tf.log(logits_scaled),1)

#错误,两次softmax
result3 = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits_scaled)

with tf.Session() as sess:
    print(sess.run(result1))
    print(sess.run(weight*result1))  #按每行做soft,行数保持一致且不变
    print(sess.run(result2))
    print(sess.run(result3))
[1.4143689 1.6642545]

[[1.4143689 1.6642545]
 [2.8287377 3.328509 ]]
 
[1.4143689 1.6642545]

[1.1718578 1.1757141]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值