伪造语音检测数据集

年份名称伪造类型数据集
2015ASVspoof2015语音合成、语音转换https://datashare.ed.ac.uk/handle/10283/853
2016

BTAS2016

语音合成、语音转换、重放https://www.idiap.ch/en/dataset/avspoof
2017ASVspoof2017语音重放https://datashare.ed.ac.uk/handle/10283/3055
2019ASVspoof2019语音合成、语音转换、重放https://datashare.ed.ac.uk/handle/10283/3336
2020ReMASC语音重放https://ieee-dataport.org/open-access/remasc-realistic-replay-attack-corpus-voice-controlled-systems
2020VSDC语音重放http://www.secs.oakland.edu/~mahmood/datasets/audiospoof.html
2020POCO语音重放GitHub - aurtg/poco
2021

Asvspoof2021

语音重放https://www.asvspoof.org/
2022

ADD2022

语音合成、语音转换http://addchallenge.cn/add2022
2022SASV2022语音合成https://sasv-challenge.github.io/
2023ADD2023语音合成http://addchallenge.cn/add2023​​​​​​​​​​​​​​
2024HAD语音合成Half-Truth: A Partially Fake Audio Detection Dataset (HAD)

ASVspoof是一个基于深度卷积神经网络(DCNN)的伪造语音检测器,可以用于检测伪造语音攻击。如果你想使用ASVspoof模型,可以下载和使用ASVspoof2021 Challenge提供的模型和数据集。以下是使用ASVspoof2021 Challenge提供的模型进行伪造语音检测的步骤: 1. 下载和安装ASVspoof2021 Challenge提供的工具包。ASVspoof2021 Challenge提供了一个完整的工具包,包括数据集、模型和评估工具等。你可以从ASVspoof2021 Challenge官网(https://www.asvspoof.org/)下载并安装这个工具包。 2. 获取测试数据。ASVspoof2021 Challenge提供了测试数据集,你可以从Challenge官网下载并解压缩这个数据集。 3. 运行ASVspoof2021 Challenge提供的模型。在ASVspoof2021 Challenge工具包中,有一个名为“baseline”的模型,它是一个基于DCNN的伪造语音检测器。你可以使用该模型对测试数据进行检测。在终端中,进入ASVspoof2021 Challenge工具包目录,运行以下命令: ``` python baseline.py --checkpoint /path/to/checkpoint --input /path/to/test/data --output /path/to/output ``` 其中,`/path/to/checkpoint`是模型文件的路径,`/path/to/test/data`是测试数据集的路径,`/path/to/output`是输出文件的路径。运行该命令后,程序会对测试数据进行检测,并将结果输出到`/path/to/output`文件中。 4. 分析检测结果。检测结果文件包含每个测试样本的检测结果和得分。你可以使用ASVspoof2021 Challenge提供的评估工具来分析和评估检测结果的准确率和性能。在终端中,进入ASVspoof2021 Challenge工具包目录,运行以下命令: ``` python asvspoof2021_evaluation.py --trial /path/to/trial/file --output /path/to/output ``` 其中,`/path/to/trial/file`是检测结果文件的路径,`/path/to/output`是输出文件的路径。运行该命令后,程序会对检测结果进行评估,并将评估结果输出到`/path/to/output`文件中。 需要注意的是,ASVspoof2021 Challenge提供的工具包和模型是用于研究和评估伪造语音检测算法的,只能用于非商业用途。如果你需要在商业环境中使用伪造语音检测算法,建议使用商业化的软件或服务。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值