VOT2019 数据集介绍与下载使用全指南(含各子集说明)


在进行目标跟踪算法研究与部署时, VOT2019(Visual Object Tracking Challenge 2019) 是一个极具权威性和代表性的数据集。它不仅被广泛用于评估算法的性能,还涵盖了短时、长时、多模态等多种实际应用场景。

本篇博客将详细介绍:

  • ✅ VOT2019 数据集概况
  • ✅ 各子集的区别与适用场景
  • ✅ 如何通过官方方式下载数据集
  • ✅ 如何配合如 LightTrack、OSTrack 等模型使用
  • ✅ Jetson 上使用建议

📌 一、VOT2019 数据集简介

VOT(Visual Object Tracking)挑战赛由多个国际高校和研究机构发起,每年一届,其中 VOT2019 是深度学习目标跟踪模型广泛采用的经典版本。

📊 特点:

  • 高质量标注(每一帧都有手工标注)
  • 多种评估指标(准确性、鲁棒性、预期平均重叠率 EAO)
  • 区分不同应用需求的多种子集(短时、长时、RGBD、红外等)

🧩 二、VOT2019 子集区别详解

子集名称全称简介常用于
VOT-ST2019Short-Term Tracking标准的短时目标跟踪场景,目标在整个序列中都存在LightTrack、SiamRPN++、OSTrack 等基础跟踪算法
VOT-LT2019Long-Term Tracking含遮挡、目标消失等长时场景,测试算法的恢复与再识别能力LTMU、SiamFC++ 等长时跟踪算法
VOT-RGBD2019RGB-Depth TrackingRGB+深度图像序列多模态跟踪研究
VOT-RGBT2019RGB-Thermal TrackingRGB+热红外图像序列红外目标跟踪,适用于夜间或极端环境(尚未完全公开)

🔽 三、如何下载 VOT2019 数据集?

VOT 数据集 不提供直接压缩包下载,而是推荐通过 官方评估工具 VOT Toolkit 自动下载

✅ 推荐方式:使用 VOT Toolkit 下载

1️⃣ 克隆 Toolkit
git clone https://github.com/votchallenge/toolkit.git
cd toolkit
2️⃣ 安装依赖(推荐 MATLAB,Python 版本支持有限)

MATLAB 用户运行:

workspace = workspace_load('workspace.json');

这一步会自动下载所需的数据集(例如 VOT2019 的所有序列和标签)。

3️⃣ 设置 VOT2019 数据集

编辑 workspace.json 文件,设置如下:

{
  "type": "workspace",
  "version": "1.0",
  "datasets": [
    {
      "name": "vot2019",
      "class": "VOT2019"
    }
  ]
}

再次运行脚本,Toolkit 会自动下载和配置数据集。


⚠️ 手动下载方式(不推荐但可行)

如果你不想使用 toolkit,可从运行 toolkit 后得到的数据目录中复制使用,例如:

toolkit/sequences/
├── agility
├── ants1
├── ...

其中每个子文件夹为一个序列,包含原始图像和 ground truth。


🧪 四、与主流算法结合使用(如 LightTrack、OSTrack)

🚀 LightTrack

  • 推荐使用 VOT-ST2019
  • 默认路径要求为:
    lighttrack/dataset/VOT2019/xxx
    lighttrack/dataset/VOT2019/list.txt
    lighttrack/dataset/VOT2019.json
    
  • 请手动拷贝或软链接上述 toolkit 下载的数据。

⚙️ OSTRack、SiamFC、STARK 等

  • 通常需要将数据转换为 LaSOT 或 GOT-10k 格式
  • 可通过脚本处理 toolkit 下载的数据。

🧠 五、Jetson 上使用建议

如果你计划在 Jetson 平台(如 Jetson Orin NX 或 Nano)上部署跟踪算法并使用 VOT2019 数据集:

✅ 建议:

  • 提前在 PC 上下载好数据集,拷贝到 Jetson 的 SSD 或 microSD。
  • 使用 LightTrack-Mobile、SiamFC++ 等轻量模型,可结合 TensorRT 优化部署。
  • 避免动态下载,Jetson 上网络和编译能力相对有限。

✅ 六、总结

项目内容
数据集名称VOT2019
子集ST2019、LT2019、RGBD2019、RGBT2019
推荐下载方式使用 VOT Toolkit 自动下载
推荐子集ST2019(适用于轻量/实时算法)
Jetson 上建议轻量模型 + 离线数据拷贝

如果你在 Jetson 部署、模型适配或 VOT 数据处理方面有进一步问题,欢迎留言交流~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值