VOT2019 数据集介绍与下载使用全指南(含各子集说明)
在进行目标跟踪算法研究与部署时, VOT2019(Visual Object Tracking Challenge 2019) 是一个极具权威性和代表性的数据集。它不仅被广泛用于评估算法的性能,还涵盖了短时、长时、多模态等多种实际应用场景。
本篇博客将详细介绍:
- ✅ VOT2019 数据集概况
- ✅ 各子集的区别与适用场景
- ✅ 如何通过官方方式下载数据集
- ✅ 如何配合如 LightTrack、OSTrack 等模型使用
- ✅ Jetson 上使用建议
📌 一、VOT2019 数据集简介
VOT(Visual Object Tracking)挑战赛由多个国际高校和研究机构发起,每年一届,其中 VOT2019 是深度学习目标跟踪模型广泛采用的经典版本。
📊 特点:
- 高质量标注(每一帧都有手工标注)
- 多种评估指标(准确性、鲁棒性、预期平均重叠率 EAO)
- 区分不同应用需求的多种子集(短时、长时、RGBD、红外等)
🧩 二、VOT2019 子集区别详解
子集名称 | 全称 | 简介 | 常用于 |
---|---|---|---|
VOT-ST2019 | Short-Term Tracking | 标准的短时目标跟踪场景,目标在整个序列中都存在 | LightTrack、SiamRPN++、OSTrack 等基础跟踪算法 |
VOT-LT2019 | Long-Term Tracking | 含遮挡、目标消失等长时场景,测试算法的恢复与再识别能力 | LTMU、SiamFC++ 等长时跟踪算法 |
VOT-RGBD2019 | RGB-Depth Tracking | RGB+深度图像序列 | 多模态跟踪研究 |
VOT-RGBT2019 | RGB-Thermal Tracking | RGB+热红外图像序列 | 红外目标跟踪,适用于夜间或极端环境(尚未完全公开) |
🔽 三、如何下载 VOT2019 数据集?
VOT 数据集 不提供直接压缩包下载,而是推荐通过 官方评估工具 VOT Toolkit 自动下载。
✅ 推荐方式:使用 VOT Toolkit 下载
1️⃣ 克隆 Toolkit
git clone https://github.com/votchallenge/toolkit.git
cd toolkit
2️⃣ 安装依赖(推荐 MATLAB,Python 版本支持有限)
MATLAB 用户运行:
workspace = workspace_load('workspace.json');
这一步会自动下载所需的数据集(例如 VOT2019 的所有序列和标签)。
3️⃣ 设置 VOT2019 数据集
编辑 workspace.json
文件,设置如下:
{
"type": "workspace",
"version": "1.0",
"datasets": [
{
"name": "vot2019",
"class": "VOT2019"
}
]
}
再次运行脚本,Toolkit 会自动下载和配置数据集。
⚠️ 手动下载方式(不推荐但可行)
如果你不想使用 toolkit,可从运行 toolkit 后得到的数据目录中复制使用,例如:
toolkit/sequences/
├── agility
├── ants1
├── ...
其中每个子文件夹为一个序列,包含原始图像和 ground truth。
🧪 四、与主流算法结合使用(如 LightTrack、OSTrack)
🚀 LightTrack
- 推荐使用 VOT-ST2019
- 默认路径要求为:
lighttrack/dataset/VOT2019/xxx lighttrack/dataset/VOT2019/list.txt lighttrack/dataset/VOT2019.json
- 请手动拷贝或软链接上述 toolkit 下载的数据。
⚙️ OSTRack、SiamFC、STARK 等
- 通常需要将数据转换为 LaSOT 或 GOT-10k 格式。
- 可通过脚本处理 toolkit 下载的数据。
🧠 五、Jetson 上使用建议
如果你计划在 Jetson 平台(如 Jetson Orin NX 或 Nano)上部署跟踪算法并使用 VOT2019 数据集:
✅ 建议:
- 提前在 PC 上下载好数据集,拷贝到 Jetson 的 SSD 或 microSD。
- 使用 LightTrack-Mobile、SiamFC++ 等轻量模型,可结合 TensorRT 优化部署。
- 避免动态下载,Jetson 上网络和编译能力相对有限。
✅ 六、总结
项目 | 内容 |
---|---|
数据集名称 | VOT2019 |
子集 | ST2019、LT2019、RGBD2019、RGBT2019 |
推荐下载方式 | 使用 VOT Toolkit 自动下载 |
推荐子集 | ST2019(适用于轻量/实时算法) |
Jetson 上建议 | 轻量模型 + 离线数据拷贝 |
如果你在 Jetson 部署、模型适配或 VOT 数据处理方面有进一步问题,欢迎留言交流~