GEE:变化检测算法介绍,和代码(Landtrendr,Bfast,CCDC,CODED,多时间特征叠加的简图分类方法,CUSUM)遥感时间序列

本文介绍了多种植被变化检测技术,包括Landtrendr、Bfast、CODED及CCDC等方法。通过这些技术可以有效地监测植被覆盖的变化情况,识别植被退化区域,并评估其程度。文中还提供了相关应用实例和技术细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Landtrendr的原理图

APP(https://emaprlab.users.earthengine.app/view/lt-gee-pixel-time-series
扰动年份和最大扰动幅度运算,源码:(https://blog.csdn.net/qq_35591253/article/details/115332724
在这里插入图片描述


Bfast原理

R语言代码(http://bfast.r-forge.r-project.org/
APP(https://andreim.users.earthengine.app/view/bfastmonitor
在这里插入图片描述
Fitted seasonal, trend and remainder (i.e. estimated noise) components for a 16-day MODIS NDVI time series (data series) of a pine plantation in the northern part of the study area. Three abrupt changes are detected in the trend component of the time series. Time (- - -), corresponding conidence interval (red), direction and magnitude of abrupt change and slope of the gradual change are shown in the estimated trend component. The solid bars on the right hand side of the plot show the same data range, to aid comparisons.

在这里插入图片描述
Simulated 16-day MODIS NDVI time series. The period from 2004 until mid-2010 (i.e., the time step just before the simulated break), is considered the history period and the period after the simulated break is the monitoring period (grey background). The monitoring period contains 6 observations. The result of the monitoring approach is shown: A stable history period is identified within the history period (i.e., 2007 until mid-2010) and used to model and predict the normal data variation (blue dashed line) to enable disturbance detection. Here, a disturbance is detected after 3 observations in the monitoring period (green vertical line)."
在这里插入图片描述

所谓分解就是将时序数据分离成不同的成分。它主要将时序数据分离成长期趋势、季节趋势和随机成分。


CODED(连续退化检测)方法检测植被退化

APP(https://bullocke.users.earthengine.app/view/amazonsamples


图4.多时间特征叠加(如土壤分数)的简图分类系统。将一个示例像素(底部为黑线)与退化区域的典型特征(顶部为有色线)进行比较,并将其划分为最佳拟合线。

在这里插入图片描述


CCDC(连续变化检测和分类)

APP(https://parevalo_bu.users.earthengine.app/
CCDC的APP和API说明文档(https://gee-ccdc-tools.readthedocs.io/en/latest/ccdc.html
在这里插入图片描述
在这里插入图片描述


<think>好的,用户想要查找与CCDC(Continuous Change Detection and Classification)相关的代码示例。首先我需要确认CCDC是什么,以及常见的实现方式。 CCDC是一种用于遥感影像的时间序列分析方法,主要用于检测地表覆盖的连续变化。它通常结合统计学方法时间序列模型来识别变化点。根据用户提供的引用[3]提到的GLanCE产品可能涉及土地覆盖变化检测,可能与CCDC相关。 接下来,我需要查找是否有公开的代码库或示例。考虑到用户之前引用的内容中有关于开发环境的部分(引用[2]),比如使用ARM GCCVSCode,可能需要跨平台的代码示例,比如Python或C/C++。 在GitHub等平台上搜索“CCDC algorithm code example”,可能会找到相关的开源项目。例如,美国地质调查局(USGS)或一些大学的研究团队可能有公开的实现。另外,CCDC常与Landsat数据结合使用,因此可能需要用到GDAL、NumPy等库进行数据处理。 需要注意的是,用户可能需要代码的结构关键步骤的解释,而不仅仅是代码片段。因此,在提供示例时,应说明每一步的作用,比如时间序列拟合、变化检测方法(如BFAST)、分类步骤等。同时,应提醒用户安装必要的依赖库,并处理输入数据格式。 另外,用户可能对如何应用CCDC到实际项目中感兴趣,可以建议参考相关论文或文档,比如Zhu et al.的论文,这些通常在方法部分会有详细描述。同时,根据引用[3]中提到的高纬度地区数据可用性问题,可能需要提醒用户注意数据源预处理步骤。 最后,生成的相关问题应围绕CCDC的实现细节、算法优化应用场景展开,帮助用户进一步探索。</think>以下是关于CCDC(Continuous Change Detection and Classification)的代码示例说明: ### CCDC算法简介 CCDC是一种基于时间序列遥感影像的连续变化检测分类方法,常用于地表覆盖变化分析[^3]。其核心是通过拟合时间序列模型检测突变点。 ### 代码框架示例(Python伪代码) ```python import numpy as np from sklearn.ensemble import RandomForestClassifier class CCDC_Processor: def __init__(self, time_series): self.ts = time_series # 时间序列数据 def detect_changes(self): # 时间序列分段拟合 breakpoints = [] for i in range(1, len(self.ts)): prev_segment = self.ts[:i] next_segment = self.ts[i:] if self._significance_test(prev_segment, next_segment): breakpoints.append(i) return breakpoints def _significance_test(self, seg1, seg2): # 使用CUSUMBFAST方法进行统计检验 return abs(np.mean(seg1) - np.mean(seg2)) > threshold # 使用示例 time_series = load_landsat_data() # 加载Landsat时间序列 processor = CCDC_Processor(time_series) changes = processor.detect_changes() ``` ### 关键步骤说明 1. **数据预处理**:需加载时相遥感影像(如Landsat系列),进行辐射校正云掩膜处理 2. **时间序列建模**:通常使用谐波回归模型拟合每个像元的光谱特征 $$ y(t) = \alpha_0 + \sum_{k=1}^n [\alpha_k \cos(2\pi kt) + \beta_k \sin(2\pi kt)] + \epsilon $$ 3. **变化检测**:通过残差分析识别突变点,使用BFAST(Break for Additive Season and Trend)方法 4. **分类实现**:结合随机森林等分类器进行土地覆盖类型识别 ### 相关资源建议 - 美国地质调查局官方提供部分Landsat处理工具 - Google Earth Engine平台集成CCDC实现 - GitHub开源项目`gee-ccdc-tools`提供JavaScript示例
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值