python:遥感时间序列处理——Mann-Kendall(MK)突变检测(突变时间/年份)

本文介绍了如何使用Python进行遥感时间序列数据分析,特别是应用Mann-Kendall(MK)突变检测方法确定突变时间。作者详细讲解了从读取时间序列数据,计算突变时间的步骤,包括计算框架、突变点判断及MK趋势检验,最终将结果输出为TIFF文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

本文记录了使用python语言读取数据和逐像素求MK突变时间的方法和代码。

并以2001年到2022年的NDVI时间序列数据为例,展示了研究区内NDVI发生突变的时间。

可计算第一次突变和最后一次突变时间。

结果如下图所示:

在这里插入图片描述



一、读取时间序列数据

在这里插入图片描述

读取时间序列代码请查看本专栏《python:处理遥感时间序列(代码框架),并保存结果》一文。

二、计算突变时间

2.1 计算突变时间框架
# 返回时
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值