labml-nn:带注释的 pyTorch 论文实现

作者:CSDN @ _养乐多_

labml-nn库集合了多种神经网络和相关算法的简单 PyTorch 实现,可以帮助我们快速开发深度学习模型。并配有逐行解释代码的文档。

一、网站

给大家分享一个深度学习模型代码逐行解释网站(https://nn.labml.ai/),主流模型都包含在里面。

在这里插入图片描述

该网站中文翻译网站:https://nn.labml.ai/zh/

该网站可以逐行解释深度模型代码。

在这里插入图片描述

二、主要包含的模型

主要包含的模型有

类型项目
Transformers多头注意力、Transformer构建模块、Transformer XL、相对多头注意力、旋转位置嵌入(RoPE)、带线性偏置的注意力(ALiBi)、RETRO、压缩Transformer、GPT架构、GLU变种、kNN-LM: 通过记忆实现泛化、反馈Transformer、开关Transformer、快速权重Transformer、FNet、无注意力Transformer、掩码语言模型、MLP-Mixer: 用于视觉的全MLP架构、关注MLPs(gMLP)、视觉Transformer(ViT)、Primer EZ、Hourglass
Eleuther GPT-NeoX在48GB GPU上生成、在两个48GB GPU上微调、LLM.int8()
扩散模型(Diffusion models)降噪扩散概率模型(DDPM)、降噪扩散隐式模型(DDIM)、潜在扩散模型、稳定扩散
生成对抗网络(Generative Adversarial Networks)原始GAN、具有深度卷积网络的GAN、Cycle GAN、Wasserstein GAN、具有梯度惩罚的Wasserstein GAN、StyleGAN 2
递归高速公路网络(Recurrent Highway Networks)循环公路网络
LSTM
HyperNetworks - HyperLSTM超网络 - HyperLSTM
ResNet残差网络
ConvMixer
胶囊网络(Capsule Networks)
U-Net
Sketch RNN
图神经网络(Graph Neural Networks)图注意力网络(GAT)、图注意力网络v2(GATv2)
强化学习(Reinforcement Learning)近端策略优化与广义优势估计、具有双网络、优先回放和双Q网络的深度Q网络
反事实遗憾最小化(CFR)用 CFR 解决信息不完全的游戏,例如扑克。库恩扑克
优化器(Optimizers)Adam、AMSGrad、具有预热的Adam优化器、Noam优化器、修正的Adam优化器、AdaBelief优化器、Sophia-G优化器
标准化层(Normalization Layers)批标准化、层标准化、实例标准化、组标准化、权重标准化、批-通道标准化、DeepNorm
蒸馏(Distillation)
自适应计算(Adaptive Computation)PonderNet
不确定性(Uncertainty)用于分类不确定性量化的证据深度学习
激活函数(Activations)模糊平铺激活(Fuzzy Tiling Activations)
语言模型抽样技术(Language Model Sampling Techniques)贪婪抽样、温度抽样、前k个抽样、核抽样(Nucleus Sampling)
可扩展训练/推理(Scalable Training/Inference)Zero3内存优化

三、github代码

https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn

四、pip安装

pip install labml-nn
### 即插即用注意力机制模块的选择 在深度学习框架中,PyTorch 和 TensorFlow 都提供了丰富的工具和库来构建复杂的模型结构。对于即插即用的注意力机制模块,可以选择一些成熟的开源项目或官方支持的功能。 #### PyTorch 中的即插即用注意力机制 PyTorch 社区活跃度高,许多开发者贡献了高质量的第三方库。例如 `labml.ai` 提供了一系列带有详细注释的深度学习论文实现[^3],其中包括多头注意力机制(Multi-Headed Attention, MHA)。这些实现通常经过优化并附带详细的文档说明,方便集成到现有模型中。 此外,在实际应用中可以直接利用 PyTorch 的内置功能或者扩展包如 `torch.nn.MultiheadAttention` 来快速部署注意力层[^1]。该函数封装了一个完整的多头自注意力计算过程,允许用户通过简单的参数配置完成定制化需求: ```python import torch import torch.nn as nn class SimpleTransformerBlock(nn.Module): def __init__(self, d_model, num_heads): super(SimpleTransformerBlock, self).__init__() self.attention = nn.MultiheadAttention(d_model, num_heads) def forward(self, query, key, value): attn_output, _ = self.attention(query, key, value) return attn_output ``` 上述代码片段展示了如何基于 `nn.MultiheadAttention` 构建一个基础的 Transformer 块。 #### TensorFlow/Keras 下的解决方案 TensorFlow 同样具备强大的生态系统支持复杂架构设计。Keras API 内嵌了几种预定义好的注意力组件,比如 `tf.keras.layers.Attention` 或者更高级别的 `tf.keras.layers.MultiHeadAttention`[^4]。它们能够无缝融入 Keras 模型流水线之中,极大简化开发流程。 下面是一个简单例子展示怎样运用 TensorFlow 实现一个多头注意单元: ```python import tensorflow as tf class TFAttentionModule(tf.keras.Model): def __init__(self, embed_dim, num_heads): super(TFAttentionModule, self).__init__() self.mha_layer = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) def call(self, inputs): output = self.mha_layer(inputs, inputs) return output ``` 此段脚本创建了一类继承自 `tf.keras.Model` 的新对象,并在其内部初始化了一个多头关注实例作为核心操作元件。 综上所述,无论是选用 PyTorch 还是 TensorFlow ,都能轻易获取到适合项目的即插即用型注意力部件。具体选型应视团队熟悉程度以及项目特殊要求而定。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值