斐波那契数,通常用 F(n)
表示,形成的序列称为斐波那契数列。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N
,计算 F(N)
。
示例 1:
输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1.示例 2:
输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2.示例 3:
输入:4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
简析:简单的用fib(N-1)+fib(N-2)就可以出来。不过为了去重复计算,就设置一个数组,然后计算每一个位置,然后将最后那个输出出来。
class Solution {
public:
int fib(int N) {
vector<int>result(N+1);
if (N < 2)
return N;
result[0] = 0;
result[1] = 1;
for (int i = 2; i < N + 1;i++)
{
result[i] = result[i - 1] + result[i - 2];
}
return result[N];
}
};