瑞利商的证明

瑞利商

\qquad 首先我们给出瑞利商(瑞利商是一个标量)的定义:
R ( A , x ) = x T A x x T x R(A,x)=\frac{x^TAx}{x^Tx} R(A,x)=xTxxTAx
\qquad 其中 A A A n × n n\times n n×n的对称矩阵, x x x为维度为 n n n的向量,我们记 A A A的从小到大排序的特征值和对应的特征向量为 λ 1 , λ 2 , λ 3 . . . λ n ; v 1 , v 2 , v 3 . . . v n \lambda_1,\lambda_2,\lambda_3...\lambda_n;v_1,v_2,v_3...v_n λ1,λ2,λ3...λn;v1,v2,v3...vn,满足:
λ m i n = λ 1 ≤ λ 2 ≤ . . . ≤ λ n = λ m a x \lambda_{min}=\lambda_1\leq\lambda_2\leq...\leq\lambda_n=\lambda_{max} λmin=λ1λ2...λn=λmax
\qquad 瑞利商有性质:
m a x x R ( A , x ) = λ n \mathop{max}\limits_{x}R(A,x)=\lambda_n xmaxR(A,x)=λn
m i n x R ( A , x ) = λ 1 \mathop{min}\limits_{x}R(A,x)=\lambda_1 xminR(A,x)=λ1

证明:

\qquad 由于A为对称矩阵,可以相似对角化为"正交阵-特征对角阵-正交阵"的性形式:
A = U Λ U T A=U\Lambda U^T A=UΛUT
\qquad 其中 Λ = d i a g ( λ 1 , λ 2 , λ 3 . . . λ n ) \Lambda=diag(\lambda_1,\lambda_2,\lambda_3...\lambda_n) Λ=diag(λ1,λ2,λ3...λn)特征对角阵, U = ( v 1 , v 2 , c v 3 . . . v n ) U=(v_1,v_2,cv_3...v_n) U=(v1,v2,cv3...vn)为特征向量阵,且为正交阵满足 U U T = I UU^T=I UUT=I。由此瑞利商可以转换为:
R ( A , x ) = x T A x x T x R(A,x)=\frac{x^TAx}{x^Tx} R(A,x)=xTxxTAx
= x T U Λ U T x x T U U T x =\frac{x^TU\Lambda U^Tx}{x^TUU^Tx} =xTUUTxxTUΛUTx
\qquad 我们令 y = U T x y=U^Tx y=UTx,则瑞利商变为:
R ( A , x ) = y T Λ y y T y R(A,x)=\frac{y^T\Lambda y}{y^Ty} R(A,x)=yTyyTΛy
= ∑ i n λ i y i 2 ∑ i n y i 2 =\frac{\mathop{\sum}\limits_{i}^n \lambda_iy_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} =inyi2inλiyi2
\qquad 由特征值的大小关系显然有:
λ 1 ∑ i n y i 2 ≤ ∑ i n λ i y i 2 ≤ λ n ∑ i n y I 2 \lambda_1\mathop{\sum}\limits_{i}^n y_i^2 \leq \mathop{\sum}\limits_{i}^n\lambda_i y_i^2 \leq \lambda_n \mathop{\sum}\limits_{i}^n y_I^2 λ1inyi2inλiyi2λninyI2
\qquad 于是有:
λ 1 ∑ i n y i 2 ∑ i n y i 2 ≤ ∑ i n λ i y i 2 ∑ i n y i 2 ≤ λ n ∑ i n y I 2 ∑ i n y i 2 \frac{\lambda_1\mathop{\sum}\limits_{i}^n y_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} \leq \frac{\mathop{\sum}\limits_{i}^n\lambda_i y_i^2}{\mathop{\sum}\limits_{i}^n y_i^2} \leq \frac{\lambda_n \mathop{\sum}\limits_{i}^n y_I^2}{\mathop{\sum}\limits_{i}^n y_i^2} inyi2λ1inyi2inyi2inλiyi2inyi2λninyI2
λ 1 ≤ R ( A , x ) ≤ λ n \lambda_1 \leq R(A,x) \leq \lambda_n λ1R(A,x)λn
\qquad 由此证得瑞利商的上界和下界,下面说明这也是瑞利商的上下确界。

\qquad 不论对向量 x x x进行何种放缩,瑞利商不变,对任意非零实数c,对x进行放缩有:
R ( A , c x ) = c x T A c x c x T c x = c 2 x T A x c 2 x T x = R ( A , x ) R(A,cx)=\frac{cx^TA cx}{cx^T cx}=\frac{c^2 x^T Ax}{c^2x^Tx}=R(A,x) R(A,cx)=cxTcxcxTAcx=c2xTxc2xTAx=R(A,x)
\qquad 因此不妨令 x T x = 1 x^Tx=1 xTx=1,此举不会影响到 x x x的任意性

\qquad 由于 v 1 , v 2 , v 3 . . . v n v_1,v_2,v_3...v_n v1,v2,v3...vn是n维线性空的一组正交基,利用这组正交基对向量 x x x进行线性表出,设系数为 a 1 , a 2 , a 3 . . . a n a_1,a_2,a_3...a_n a1,a2,a3...an,满足:
x = ∑ i n a i v i x=\mathop{\sum}\limits_{i}^n a_iv_i x=inaivi
\qquad 由于 x T x = 1 x^Tx=1 xTx=1,则有:
x T x = ∑ i n a i 2 = 1 x^Tx=\mathop{\sum}\limits_{i}^na_i^2=1 xTx=inai2=1
\qquad 此时考虑到 U = ( v 1 , v 2 , v 3 . . . v n ) U=(v_1,v_2,v_3...v_n) U=(v1,v2,v3...vn),且有 v 1 , v 2 , v 3 . . . v n v_1,v_2,v_3...v_n v1,v2,v3...vn相互正交:
R ( A , x ) = ( ∑ i n a i v i ) T U Λ U T ( ∑ i n a i v i ) x T x R(A,x)=\frac{(\mathop{\sum}\limits_{i}^n a_iv_i)^T U \Lambda U^T (\mathop{\sum}\limits_{i}^n a_iv_i)}{x^Tx} R(A,x)=xTx(inaivi)TUΛUT(inaivi)
= ( ∑ i n a i v i ) T U Λ U T ( ∑ i n a i v i ) =(\mathop{\sum}\limits_{i}^n a_iv_i)^T U \Lambda U^T (\mathop{\sum}\limits_{i}^n a_iv_i) =(inaivi)TUΛUT(inaivi)
= ∑ i n a i 2 λ i =\mathop{\sum}\limits_{i}^n a_i^2\lambda_i =inai2λi
\qquad 显然也有:
λ 1 ≤ R ( A , x ) ≤ λ n \lambda_1 \leq R(A,x) \leq \lambda_n λ1R(A,x)λn
\qquad 并且由于 ∑ i n a i 2 = 1 \mathop{\sum}\limits_{i}^na_i^2=1 inai2=1,可以看出:
\qquad \qquad a 1 2 = 1 , a 2 = a 3 = . . . = a n = 0 a_1^2=1,a_2=a_3=...=a_n=0 a12=1,a2=a3=...=an=0时,此时 x = v 1 x=v_1 x=v1,瑞利商取得最小值 λ 1 \lambda_1 λ1
\qquad \qquad a n 2 = 1 , a 1 = a 2 = . . . = a n − 1 = 0 a_n^2=1,a_1=a_2=...=a_{n-1}=0 an2=1,a1=a2=...=an1=0时,此时 x = v n x=v_n x=vn,瑞利商取得最大值 λ n \lambda_n λn
\qquad 瑞利商性质证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值