抄书——最优化的理论与方法(3)——数学基础(矩阵的Rayleigh商)

定义 1.2.4:
A A A n × n n\times n n×n Hermite 矩阵, u ∈ C n u\in C^n uCn,则称:
R λ ( u ) = u ∗ A u u ∗ u , u ≠ 0 ( 1.2.28 ) R_{\lambda}(u)=\frac{u^*Au}{u^*u},u\neq0 \qquad(1.2.28) Rλ(u)=uuuAu,u̸=0(1.2.28)
为 Hermite 矩阵 A A ARayleigh 商(Rayleigh Quotient)
定理 1.2.5:
A A A n × n n\times n n×n Hermite 矩阵, u ∈ C n u\in C^n uCn,则(1.2.28)定义的 Rayleigh 商具有下列基本性质:
(1)齐次性
R λ ( α u ) = R λ ( u ) , α ≠ 0 ( 1.2.29 ) R_{\lambda}(\alpha u)=R_{\lambda}(u),\alpha \neq 0\qquad(1.2.29) Rλ(αu)=Rλ(u),α̸=0(1.2.29)
(2)极性
λ 1 = max ⁡ ∥ u ∥ 2 = 1 u ∗ A u = max ⁡ ∥ u ∥ ≠ 0 u ∗ A u u ∗ u ( 1.2.30 ) λ n = min ⁡ ∥ u ∥ 2 = 1 u ∗ A u = min ⁡ ∥ u ∥ ≠ 0 u ∗ A u u ∗ u ( 1.2.31 ) \lambda_1=\max_{\Vert u \Vert_2=1} u^*Au = \max_{\Vert u \Vert \neq 0}\frac{u^*Au}{u^*u}\qquad(1.2.30)\\ \lambda_n=\min_{\Vert u \Vert_2=1} u^*Au = \min_{\Vert u \Vert \neq 0}\frac{u^*Au}{u^*u}\qquad(1.2.31) λ1=u2=1maxuAu=u̸=0maxuuuAu(1.2.30)λn=u2=1minuAu=u̸=0minuuuAu(1.2.31)
这表明 Rayleigh 商具有有界性
λ n ≤ R λ ( u ) ≤ λ 1 ( 1.2.32 ) \lambda_n\le R_{\lambda}(u) \le \lambda_1 \qquad(1.2.32) λnRλ(u)λ1(1.2.32)
(3)极小残量性质:对任意 u ∈ C n u\in C^n uCn
∥ ( A − R λ ( u ) I ) u ∥ ≤ ∥ ( A − μ I ) u ∥ , ∀ μ ∈ R ( 1.2.33 ) \Vert (A-R_{\lambda}(u)I)u\Vert \le \Vert(A-\mu I)u\Vert,\quad\forall \mu\in R\qquad(1.2.33) (ARλ(u)I)u(AμI)u,μR(1.2.33)
证明:
性质(1)从定义 1.2.4 可以直接得到。
由于性质(1),我们可以在单位球面 ∥ x ∥ 2 = 1 \Vert x \Vert_2 =1 x2=1 上讨论 Rayleigh商,即
R λ ( u ) = u ∗ A u , ∥ u ∥ 2 = 1 R_{\lambda}(u) = u^*Au,\quad \Vert u \Vert_2=1 Rλ(u)=uAu,u2=1
设酉矩阵 T T T A A A 化为对角矩阵, T ∗ A T = Λ T^*AT=\Lambda TAT=Λ这是由 A A A 是 Hermite 矩阵得到的), 又设 u = T y ⇒ y = T ∗ u u=Ty \Rightarrow y=T^*u u=Tyy=Tu,则
u ∗ A u = u ∗ T Λ T ∗ u = y ∗ Λ y = ∑ i = 1 n λ i ∣ y i ∣ 2 { ≥ λ n ∑ i = 1 n ∣ y i ∣ 2 ≤ λ 1 ∑ i = 1 n ∣ y i ∣ 2 u^*Au=u^*T\Lambda T^*u = y^* \Lambda y=\sum_{i=1}^{n}\lambda_i \vert y_i \vert^2 \left\{ \begin{array}{c}\ge \lambda_n \sum_{i=1}^{n}\vert y_i\vert^2\\ \le \lambda_1 \sum_{i=1}^{n}\vert y_i\vert^2 \end{array}\right. uAu=uTΛTu=yΛy=i=1nλiyi2{λni=1nyi2λ1i=1nyi2
注意到 ∥ u ∥ 2 = ∥ y ∥ 2 = 1 \Vert u \Vert_2=\Vert y \Vert_2=1 u2=y2=1,因而有界性得到,并且当 y 1 = 1 , y i = 0 , i ≠ 1 y_1=1,y_i=0,i\neq 1 y1=1,yi=0,i̸=1时,极大值 λ 1 \lambda_1 λ1 达到;当 y n = 1 , y j = 0 , j ≠ n y_n=1,y_j=0,j\neq n yn=1,yj=0,j̸=n时,极小值 λ n \lambda_n λn 达到,从而性质(2)成立。
为了证明性质(3),我们定义
s ( u ) = A u − R λ ( u ) u , u ≠ 0 ( 1.2.34 ) s(u)=Au-R_{\lambda}(u)u,\quad u\neq 0\qquad(1.2.34) s(u)=AuRλ(u)u,u̸=0(1.2.34)
于是有
A u = s ( u ) + R λ ( u ) u ( 1.2.35 ) Au=s(u)+R_{\lambda}(u)u \qquad(1.2.35) Au=s(u)+Rλ(u)u(1.2.35)
由于
( s ( u ) , u ) = ( A u − R λ ( u ) u , u ) = u ∗ ( A u − R λ ( u ) u ) = u ∗ A u − u ∗ R λ ( u ) u = 0 (s(u),u)=(Au-R_{\lambda}(u)u,u)=u^*(Au-R_{\lambda}(u)u)=u^*Au-u^*R_{\lambda}(u)u=0 (s(u),u)=(AuRλ(u)u,u)=u(AuRλ(u)u)=uAuuRλ(u)u=0
可知 A A A 的分解(1.2.35)是直交分解,从而 R λ ( u ) u R_{\lambda}(u)u Rλ(u)u A u Au Au L = { u } L=\{ u\} L={u} 上的直交投影,从而(1.2.34)定义的残量具有极小性质(3)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值