opencv
qq_35641067
这个作者很懒,什么都没留下…
展开
-
HOG特征进行人脸检测
HOGHOG是计算图像的梯度以及方向,然后使用直方图对梯度值进行统计得到的特征对待检测图像进行HOG特征提取后,送入SVM进行分类1.HOG预处理以下讲解默认图片为64X1282.计算图像的梯度和方向通过使用sobel算子求出水平梯度和垂直梯度;关于sobel算子,可参考sobel算子最后使用如下公式计算出梯度幅值和梯度方向[其中gx,gy分别指水平梯度,垂直梯度]g=gx2+gy2θ=arctangygx g = \sqrt { g^2_x + g^2_y } \\ \th原创 2020-07-06 17:30:35 · 3147 阅读 · 0 评论 -
Haar-like特征之人脸检测
推荐阅读https://www.cnblogs.com/BlueFire-py/p/9396837.html原创 2020-07-02 21:13:19 · 2841 阅读 · 2 评论 -
LBP特征
LBP特征1.原始的LBP的算子每个像素点以其周围的8邻域像素的灰度值与自身灰度值比较【大于等于赋值为1,小于赋值为0】之后按顺时针/逆时针的方式平铺得到一个二进制数,此二进制数转十进制作为该像素点的LBP值(LBP描述符)LBP算子具有灰度不变性:对整张图做不同的光照变化,都不会改变中心像素与邻域像素之间的相对像素的大小比较。计算原图上的每个像素点的LBP值,利用全图所有像素点的LBP值的频数直方图归一化作为原图提取到的LBP特征,因为原始LBP算子的十进...原创 2020-06-28 22:03:00 · 1806 阅读 · 1 评论 -
Harris角点检测原理
Harris角点检测原理发现角点的原则:在角点周围的区域内,图像梯度有两个及以上的主要方向; 角点在区域内必须容易区分。 设计两个评价标准【使角点成为可区分的点】:(1)通过查看一个较小的窗口容易发现角点;(2)在任意方向移动这个窗口强度变化很大。1.强度变化描述表示窗口W的移动量 ,表示点移动之后的强度,表示点的强度,是窗口函数,表示点在窗口所占的权重1-1.窗函数的选择选择均值滤波表示各窗口对强度变化的权重(贡献)一样;选择高...原创 2020-06-24 23:05:25 · 209 阅读 · 0 评论 -
opencv边缘检测之sobel算子,canny算子
边缘检测1.边缘与导数边缘:图像像素值跳变的地方【图像像素突变的地方】导数:描述变化率的大小[图像跳变的幅度大小] 求完导数的图可以直接作为边缘提取的图, 跳变大小为0->黑色 跳变大小为>0 -->接近白色2.边缘检测的两种常用方法2.1 sobel 算子原理:利用sobel算子分别在X方向,Y方向进行卷积得到Y方向上的边缘与X方向的边缘2.1.1 ...原创 2020-05-01 11:07:49 · 1481 阅读 · 0 评论 -
opencv之阈值二值化
阈值分割(二值化)阈值分类1.全局阈值定义:全局只使用一个阈值进行二值划分 缺点:没有考虑光照,明暗变化,用全局阈值可能会丢失图像信息2.局部自适应阈值定义:对不同区域设置不同的阈值,利用这些不同的阈值进行局部的划分,这些阈值通常是像素的像素邻域内的平均值,中值或者高斯加和值。阈值的求法1.大津阈值(最大类间方差法)原理:选取类间方差最大的阈值作为全局阈值划分...原创 2020-04-28 21:34:55 · 2934 阅读 · 0 评论 -
opencv之图像滤波
图像滤波图像滤波分类转存失败重新上传取消转存失败重新上传取消卷积简介图片来自【http://www.elecfans.com/d/920675.html】卷积的实质对某个像素的领域内的所有像素与卷积核逐像素进行线性加权平均值如图所示,原图为6*6的输入图像,经过3*3的卷积核变成4*4的输出图像【(6-3)//1+1】计算公式:(input.size-kern...原创 2020-04-27 17:41:29 · 499 阅读 · 0 评论 -
opencv之颜色空间变换
彩色空间互转RGB空间RGB(红绿蓝)是根据人眼识别的颜色定义出的空间,可表示大部分颜色。 RGB颜色空间是基于颜色的加法混色原理,从黑色不断叠加Red,Green,Blue的颜色,最终可得到白色光HSV颜色空间HSV是一种将RGB色彩空间的点在倒圆锥体中的表示方法H(Hue)[色相]:色相是色彩的基本属性,相当于颜色的名称S(Saturation)[饱和度]:色彩的纯...原创 2020-04-25 22:24:52 · 290 阅读 · 0 评论 -
opencv之几何变换
图像处理之几何变换1.坐标系笛卡尔坐标与图像坐标笛卡尔坐标:以图像中心为原点,向上方向为y轴正方向,向右方向为x轴正方向图像坐标:以图像左上角为原点,原点以下方向为y轴正方向,原点以右方向为x轴正方向2.变换矩阵T矩阵表明原图坐标(v,w)通过变换矩阵T得到在同一坐标系下的变换坐标(x,y) 原图坐标系与变换后的坐标都指图像坐标系二维图像坐标变换的核心的变换图像...原创 2020-04-25 15:39:43 · 290 阅读 · 0 评论 -
opencv之图像插值
图像插值算法1.定义插值指的是在一幅图像[u,v]中,灰度值仅在整数位置有定义,然而输出图像[x,y]的灰度值一般由处在非整数坐标(u,v)值来决定2.关于插值的映射方法1.向前映射的插值法:原图像映射到输出图像中,原图像像素值由4个输出图像的像素进行分配用h(x,y)表示原图像,用f(x,y)表示目标图像,插值的原理就是利用整数位置上的像素值h(x,y)去构造对应位置分数位置的像素...原创 2020-04-21 20:40:55 · 772 阅读 · 0 评论