【图论小课堂】Cayley定理

Cayley定理 于1854年在 Arthur Cayley 的论文中首次被提到。

本文简单讲述了Cayley定理在图论中的应用,并用普吕弗序列做了简单证明

一般的表述:

每个群 G G G 同构于 对称群的子群


而在图论与组合数学中,该定理被用来计算 完全图生成树 的总数。

图论中的表述:

假如某一完全图有 n n n 个顶点,那么该图的生成树的数量为 n n − 2 n^{n-2} nn2 个。

Cayley定理 的证明方法大概有三种,这里讲述最简单也是最直观的一种方法 利用 普吕弗序列 来证明 Cayley定理。


T T T 为一颗标号树,共有 n n n 个顶点,分别标号为 a 1 , a 2 , a 3 , ⋯   , a n a_1,a_2,a_3, \cdots ,a_{n} a1,a2,a3,,an

每次取出标号最小的叶子,记为 a 1 a_1 a1 ,而 a 1 a_1 a1的邻接点记为 b 1 b_1 b1 。注意:此时 叶子 a 1 a_1 a1 不一定为 标号为 1 1 1 的叶子。

将顶点 a 1 a_1 a1 与 边 ( a 1 , b 1 a_1 , b_1 a1,b1 ) 从树中删去。注意:此时 b 1 b_1 b1 不一定会变成叶子。

设一个 普吕弗序列 B B B ,将 b 1 b_1 b1 加入到序列 B B B 中。

如此往复,执行操作共 n − 2 n-2 n2 次,直到树 T T T 只剩一条边。

我们便可以得到一个普吕弗序列 B B B

b 1 , b 2 , b 3 , ⋯   , b n − 2 b_1,b_2,b_3,\cdots ,b_{n-2} b1,b2,b3,,bn2

我们可以用该序列重新构造出 树 T T T

我们先写一个从 1 1 1 n n n 的有序序列 C C C

1 , 2 , 3 , ⋯   , n 1,2,3,\cdots ,n 1,2,3,,n

然后每次从 序列 C C C 中找到第一个不出现在序列 B B B 中的元素,记为 c 1 c_1 c1

c 1 c_1 c1 b 1 b_1 b1 分别从序列中删去,并在树 T T T 中加入这两个顶点与他们之间的边 ( c 1 , b 1 c_1,b_1 c1,b1)

如此往复,执行操作共 n − 2 n-2 n2 次,序列 C C C 中仅剩两个元素,分别设为 c n − 1 , c n c_{n-1},c_{n} cn1,cn

在树 T T T 中加入最后一条边 ( c n − 1 , c n c_{n-1},c_{n} cn1,cn ) ,我们便从普吕弗序列中将树 T T T 构建了回来。


经过上述推导,在构建普吕弗序列时,我们可以得知 B B B 序列中一共有 n − 2 n-2 n2 个元素, b i ∈ [ 1 , n ] 且 b i ∈ Z + b_i \in [1,n] 且 b_i \in Z^{+} bi[1,n]biZ+

n − 2 n × n × ⋯ × n ⏞ = n n − 2 \begin{matrix}n-2\\\overbrace{n \times n\times \cdots \times n}\end{matrix} = n^{n-2} n2n×n××n =nn2

所以便可以证明得

假如某一完全图有 n n n 个顶点,那么该图的生成树的数量为 n n − 2 n^{n-2} nn2 个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

默子要早睡.Histone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值