Cayley凯莱定理——一一对应

Cayley定理指出,过$n$个已知顶点的树的数目为$n^{n-2}$,揭示了无环连通图的构建方案数量。本文通过一一对应法证明了该定理,并提供了构造这些树的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理

过$n$个有标志顶点的树的数目等于$n^{n-2}$。

此定理说明用$n-1$条边将$n$个已知的顶点连接起来的连通图的个数是$n^{n-1}$。也可以这样理解,将n个城市连接起来的树状网络有$n^{n-1}$种可能方案.所谓树状,指的是用$n-1$条边将$n$个城市连接起来,即无环。当然,建造一个树状网络一般是求其长度最短或造价最少等.Cayley定理只能说明可能方案的数目。

证明

Cayley定理的证明方法很多,下面采用最聪明也是最容易理解的一一对应法。不失一般性,假定已知的n个顶点标志为1,2,..n.

假设$T$是其中一棵树,树叶中有标号最小的,设为$a_1$,$a_1$的临界点为$b_1$,从图中消去$a_1$点和边$(a_1,b_1)$,$b_1$点便成为消去后余下的树$T_1$的顶点。在余下的树$T_1$中继续寻找标号最小的树叶,设为$a_2$,$a_2$的邻接点为$b_2$,从$T_1$中消去$a_2$及边$(a_2,b_2)$。如此步骤共执行n-2次,直到最后只剩下一条边为止.于是一棵树对应一序列

$$b_1,b_2,\cdots ,b_{n-2}$$

$b_1,b_2,\cdots ,b_{n-2}$是1到n的数,并且允许重复。

反过来从$b_1 b_2 \cdots b_{n-2}$可以恢复树$T$本身,方法如下:

一个是顶点标号的有序序列

$$1,2, \cdots ,n  \tag{1} $$

另一个是生成的序列

$$b_1,b_2,\cdots ,b_{n-2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值