哈密顿-凯莱(Hamilton-Cayley)定理的三种证明

这个曾经看来很难的OI知识在学过高代之后就很好证明了,最近学会了两个新的证明方法,比以前的简洁很多,给那些觉得这个定理难的同学分享一下。

Hamilton-Cayley 定理:

A A A n n n阶矩阵, f ( λ ) = ∣ λ I − A ∣ f(\lambda)=|\lambda I-A| f(λ)=λIA为其特征多项式,则 f ( A ) = 0 f(A)=0 f(A)=0

证明1

  • B B B ( λ I − A ) (\lambda I-A) (λIA)的伴随矩阵(此时 λ \lambda λ是数域上的数),则 B ( λ I − A ) = ( λ I − A ) B = f ( λ ) I B(\lambda I - A) = (\lambda I - A)B = f(\lambda) I B(λIA)=(λIA)B=f(λ)I(伴随矩阵的性质)。

  • B B B可拆分为为若干数字矩阵 B i B_i Bi B i B_i Bi中元素不含 λ \lambda λ)与未定元 λ \lambda λ的乘积, B = λ n − 1 B n − 1 + λ n − 2 B n − 2 + . . . + B 0 B=\lambda^{n-1}B_{n-1}+\lambda^{n-2}B_{n-2}+...+B_0 B=λn1Bn1+λn2Bn2+...+B0

  • 现在将 ( λ I − A ) (\lambda I-A) (λIA) B B B看做是 λ \lambda

  • 9
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
哈密顿-雅可比-贝尔曼方程的推导是基于动态规划的思想。动态规划是一种解决多阶段决策过程最优化问题的方法。在这个过程中,我们需要找到一个最优策略,使得总成本最小化。这个问题可以被分解成多个子问题,每个子问题都是一个最优化问题。通过解决这些子问题,我们可以得到整个问题的最优解。 在动态规划中,我们需要定义一个价值函数,它表示在当前状态下采取最优策略所能得到的最小成本。哈密顿-雅可比-贝尔曼方程就是用来计算这个价值函数的。具体来说,它是一个偏微分方程,描述了价值函数在时间和状态上的变化。 哈密顿-雅可比-贝尔曼方程的推导可以分为两个步骤。首先,我们需要定义一个贝尔曼方程,它描述了价值函数在一个时间步长内的变化。然后,我们将这个贝尔曼方程推广到连续时间和状态空间上,得到哈密顿-雅可比-贝尔曼方程。 具体来说,贝尔曼方程可以表示为: V(s) = min_u {c(s,u) + γ ∑_s' p(s'|s,u) V(s')} 其中,V(s)表示在状态s下的价值函数,c(s,u)表示在状态s下采取行动u所产生的成本,p(s'|s,u)表示在状态s下采取行动u后转移到状态s'的概率,γ是一个折扣因子,用于平衡当前和未来的成本。 接下来,我们将这个贝尔曼方程推广到连续时间和状态空间上。我们定义一个哈密顿函数H(x,u,t),它表示在时间t和状态x下采取行动u所能得到的最小成本。哈密顿函数可以表示为: H(x,u,t) = min_v {c(x,u,v,t) + ∂V(x,t)/∂t + ∑_i=1^n f_i(x,u,v,t) ∂V(x,t)/∂x_i} 其中,c(x,u,v,t)表示在状态x下采取行动u和v所产生的成本,f_i(x,u,v,t)表示状态x在第i个维度上的变化率。 最后,我们可以得到哈密顿-雅可比-贝尔曼方程: ∂V(x,t)/∂t + min_u H(x,u,t) = 0 这个方程描述了价值函数在时间和状态上的变化。通过求解这个方程,我们可以得到最优策略和最小成本。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值