隧道人员定位考勤软件详细介绍

  1. 首页

隧道考勤定位软件需要使用谷歌浏览器操作,首先下载安装谷歌浏览器,在地址栏输入访问地址进入软件首页。
在这里插入图片描述

首页显示地图和左右洞人数,人员位置实时显示在地图上。
在这里插入图片描述

  1. 基础信息管理

2.1 隧道区域

隧道区域用于确定考勤区域,选中需要修改的隧道。
在这里插入图片描述

选择需要修改的的隧道,点击修改,输入坐标值坐标 例如:X1,Y1|X2,Y2|X3,Y3|X4,Y4

其中X1,Y1|X2,Y2|X3,Y3|X4,Y4为矩形的四个顶点坐标,按照顺时针方向依次输入,顺序不能输错。

修改完成后点击提交
在这里插入图片描述

2.2 人员信息录入

点击人员管理,点击添加可以添加人员信息,也可以直接下载人员导入模板导入。

点击添加依次录入卡号,姓名,定位标签ID,工种,备注 等信息,选择图标点击提交完成人员添加。
在这里插入图片描述

在这里插入图片描述

2.3 删除人员信息

如下图所示选中需要删除的人员,点击删除点击确定完成删除。
在这里插入图片描述

2.4 人员导入Excel

首先需要点击下载人员导入模板

在这里插入图片描述

人员导入模板如下,填写相关信息后保存。然后点击人员导入直接导入。

  1. 考勤信息

点击考勤信息可以查看人员进入隧洞时间。
在这里插入图片描述

  1. 地图管理
    在这里插入图片描述

点击地图管理,点击添加,依次填写如下信息,填写完成后点击提交完成地图添加。

在这里插入图片描述

  1. 考勤信息

考勤信息记录了左右洞进出人员信息,可以将信息投屏到LED显示屏幕上。
在这里插入图片描述

LED投屏显示相关信息
在这里插入图片描述

  1. 轨迹回放

如下图所示,点击轨迹回放,选择人员,开始和结束时间可以查看任意时段人员的历史轨迹。

在这里插入图片描述

  1. 清空考勤

如果考勤信息有错误可以点击清空考勤清除所有考勤信息。

在这里插入图片描述
在这里插入图片描述

定位原理如下图所示,人员佩戴定位信标,在隧道安装信号接收基站,信标发送脉冲,基站接收信号脉冲从而实现对人员的实时精确定位,定位精度30厘米。
在这里插入图片描述

如下图所,定位系统主要由信标,定位基站,网桥(信号传输)定位引擎服务器组成。
在这里插入图片描述

在这里插入图片描述

如下图所示为定位管理平台软件,实时显示每个人的精确位置

在这里插入图片描述

如下图所示可以为不同的人选择不同的图标显示

在这里插入图片描述

历史轨迹回放,可以查看任意人员某一时间段的运动轨迹

在这里插入图片描述

定位基站的安装方式如下图所示,平均间隔安装方式间隔300米安装一台,最大间隔安装方式间隔600米安装。

在这里插入图片描述

定位基站实际安装图
在这里插入图片描述
在这里插入图片描述

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值